Notes: Intro to Time Series and Forecasting – Ch5 Modeling and Forecasting with ARMA Processes

Yingbo Li

05/04/2019

1

Table of Contents

Yule-Walker Estimation

Maximum Likelihood Estimation

Order Selection

Diagnostic Checking

Parameter estimation for ARMA(p, q)

• When the orders p, q are known, estimate the parameters

$$\phi = (\phi_1, \dots, \phi_p), \quad \theta = (\theta_1, \dots, \theta_q), \quad \sigma^2$$

- There are p + q + 1 parameters in total
- Preliminary estimations
 - Yule-Walker and Burg's algorithm: good for AR(p)
 - Innovation algorithm: good for MA(q)
 - Hannan-Rissanen algorithm: good for ARMA(p,q)
- · More efficient estimation: MLE
- When the orders p, q are unknown, use model selection methods to select orders
 - Minimize one-step MSE: FPE
 - Penalized likelihood methods: AIC, AICC, BIC

Yule-Walker equations

• $\{X_t\}$ is a casual AR(p) process

$$X_t = \phi_1 X_{t-1} + \dots + \phi_p X_{t-p} + Z_t$$

• Multiplying each side by $X_t, X_{t-1}, \dots, X_{t-p}$, respectively, and taking expectation, we got the Yule-Walker equations

$$\sigma^{2} = \gamma(0) - \phi_{1}\gamma(1) - \cdots + \phi_{p}\gamma(p)$$

$$\begin{bmatrix} \gamma(0) & \gamma(1) & \cdots & \gamma(p-1) \\ \gamma(1) & \gamma(0) & \cdots & \gamma(p-2) \\ \vdots & \vdots & \vdots & \vdots \\ \gamma(p-1) & \gamma(p-2) & \cdots & \gamma(0) \end{bmatrix} \begin{bmatrix} \phi_{1} \\ \phi_{2} \\ \vdots \\ \phi_{p} \end{bmatrix} = \begin{bmatrix} \gamma(1) \\ \gamma(2) \\ \vdots \\ \gamma(p) \end{bmatrix}$$

$$\xrightarrow{\Gamma_{p}}$$

· Vector representation

$$\Gamma_p \phi = \gamma_p, \quad \sigma^2 = \gamma(0) - \phi' \gamma_p$$

4

Yule-Walker estimator and its properties

• Yule-Walker estimators $\hat{\phi}=(\hat{\phi}_1,\cdots,\hat{\phi}_p)$ are obtained by solving the hatted version of the Yule-Walker equations

$$\hat{\boldsymbol{\phi}} = \hat{\boldsymbol{\Gamma}}_p^{-1} \hat{\boldsymbol{\gamma}}_p, \quad \hat{\boldsymbol{\sigma}}^2 = \hat{\boldsymbol{\gamma}}(0) - \hat{\boldsymbol{\phi}}' \hat{\boldsymbol{\gamma}}_p$$

• The fitted model is causal and $\hat{\sigma}^2 > 0$

$$X_t = \hat{\phi}_1 X_{t-1} + \dots + \hat{\phi}_p X_{t-p} + Z_t, \quad Z_t \sim WN(0, \hat{\sigma}^2)$$

· Asymptotic normality

$$\hat{\boldsymbol{\phi}} \stackrel{.}{\sim} \operatorname{N}\left(\boldsymbol{\phi}, \frac{\sigma^2 \boldsymbol{\Gamma}_p^{-1}}{n}\right)$$

5

Yule-Walker estimator is a moment estimator: because it is obtained by equating theoretical and sample moments

- · Usually moment estimators have much higher variance than MLE
- But Yule-Walker estimators of AR(p) process have the same asymptotic distribution as the MLE
- Moment estimators can fail for MA(q) and general ARMA
 - For example, MA(1): $X_t = Z_t + \theta Z_{t+1}$ with $\{Z_t\} \sim WN(0, \sigma^2)$.

$$\gamma(0) = (1 + \theta^2)\sigma^2, \quad \gamma(1) = \theta\sigma^2 \implies \rho(1) = \frac{\theta}{1 + \theta^2}$$

Moment estimator of θ is obtained by solving

$$\hat{\rho}(1) = \frac{\hat{\theta}}{1 + \hat{\theta}^2} \quad \Longrightarrow \quad \hat{\theta} = \frac{1 \pm \sqrt{1 - 4\hat{\rho}(1)^2}}{2\hat{\rho}(1)}$$

This can yield complex $\hat{\theta}$ if $|\hat{\rho}(1)|>1/2$, which can happen if $\rho(1)=1/2$, i.e., $\theta=1$

Innovations algorithm: estimate MA coefficients

Fitted innovations MA(m) model

$$X_t = Z_t + \hat{\theta}_{m1} Z_{t-1} + \dots + \dots + \hat{\theta}_{mm} Z_{t-m}, \quad \{Z_t\} \sim WN(0, \hat{v}_m)$$

where $\hat{\theta}_m$ and \hat{v}_m are from the innovations algorithm with ACVF replaced by the sample ACVF

- For a MA(q) process, the innovations algorithm estimator $\hat{\theta}_q = (\hat{\theta}_{q1}, \dots, \hat{\theta}_{qq})'$ is NOT consistent for $(\theta_1, \dots, \theta_q)'$
- Choice of m: increase m until the vector $(\hat{\theta}_{m1}, \dots, \hat{\theta}_{mq})'$ stabilizes

Likelihood function of a Gaussian time series

- Suppose $\{X_t\}$ is a Gaussian time series with mean zero
- Assume that covariance matrix $\Gamma_n = E(\mathbf{X}_n \mathbf{X}'_n)$ is nonsingular
- One-step predictors using innovations algorithm: $\hat{X}_1=0$ and

$$\hat{X}_{j+1} = P_j X_{j+1}$$

with MSE $v_j = E\left(X_{j+1} - \hat{X}_{j+1}\right)^2$

- Example: AR(1)

$$\hat{X}_j = \begin{cases} 0, & j=1\\ \phi \hat{X}_{j-1} & j \geq 2 \end{cases}, \quad v_j = \begin{cases} \frac{\sigma^2}{1-\phi^2}, & j=0\\ \sigma^2 & j \geq 1 \end{cases}$$

Likelihood function

$$L \propto |\mathbf{\Gamma}_n|^{-1/2} \exp\left(-\frac{1}{2}\mathbf{X}_n'\mathbf{\Gamma}_n^{-1}\mathbf{X}_n\right)$$
$$= (v_0v_1\cdots v_{n-1})^{-1/2} \exp\left[-\frac{1}{2}\sum_{j=1}^n \frac{(X_j - \hat{X}_j)^2}{v_{j-1}}\right]$$

Maximum likelihood estimation of ARMA(p, q)

- Innovations MSE $v_i = \sigma^2 r_i$, where r_i depends on ϕ and θ
- Maximizing the likelihood is equivalent to minimizing

$$-2\log L(\phi, \theta, \sigma^2) = n\log(\sigma^2) + \sum_{j=1}^n \log(r_{j-1}) + \frac{S(\phi, \theta)}{\sigma^2},$$

where

$$S(\phi, \theta) = \sum_{j=1}^{n} \frac{(X_j - \hat{X}_j)^2}{r_{j-1}}$$

• MLE $\hat{\sigma}^2$ can be expressed with MLE $\hat{\phi}, \hat{\boldsymbol{\theta}}$

$$\hat{\sigma}^2 = \frac{S\left(\hat{\boldsymbol{\phi}}, \hat{\boldsymbol{\theta}}\right)}{n}$$

• MLE $\hat{\phi}, \hat{\theta}$ are obtained by minimizing

$$\log \left[\frac{S(\phi, \theta)}{n} \right] + \frac{1}{n} \sum_{j=1}^{n} \log(r_{j-1})$$

Not depend on σ^2 !

Asymptotic normality of MLE

• When n is large, for a causal and invertible ARMA(p,q) process,

$$\left[\begin{array}{c} \hat{\boldsymbol{\phi}} \\ \hat{\boldsymbol{\theta}} \end{array}\right] \stackrel{\cdot}{\sim} \mathbf{N}_{p+1} \left(\left[\begin{array}{c} \hat{\boldsymbol{\phi}} \\ \hat{\boldsymbol{\theta}} \end{array}\right], \frac{\mathbf{V}}{n} \right)$$

 For an AR(p) process, MLE has the same asymptotic distribution as the Yule-Walker estimator

$$\mathbf{V} = \sigma^2 \mathbf{\Gamma}_p^{-1} \quad \Longrightarrow \quad \hat{\boldsymbol{\phi}} \stackrel{\cdot}{\sim} \mathrm{N} \left(\boldsymbol{\phi}, \frac{\sigma^2 \mathbf{\Gamma}_p^{-1}}{n} \right)$$

Examples of V

• AR(1)

$$\mathbf{V} = 1 - \phi_1^2$$

• AR(2)

$$\mathbf{V} = \begin{bmatrix} 1 - \phi_2^2 & -\phi_1(1 + \phi_2) \\ -\phi_1(1 + \phi_2) & 1 - \phi_2^2 \end{bmatrix}$$

• MA(1)

$$\mathbf{V} = 1 - \theta_1^2$$

• MA(2)

$$\mathbf{V} = \begin{bmatrix} 1 - \theta_2^2 & \theta_1 (1 - \theta_2) \\ \theta_1 (1 - \theta_2) & 1 - \theta_2^2 \end{bmatrix}$$

• ARMA(1,1)

$$\mathbf{V} = \frac{1 + \phi\theta}{(\phi + \theta)^2} \begin{bmatrix} (1 - \phi^2)(1 + \phi\theta) & -(1 - \theta^2)(1 - \phi^2) \\ -(1 - \theta^2)(1 - \phi^2) & (1 - \phi^2)(1 + \phi\theta) \end{bmatrix}$$

Order selection

- Why? Harm of using too large p, q to fit models:
 - Large errors arising from parameter estimation of the model
 - Large MSEs of forecasts
- FPE: only for AR(p) processes

$$\mathsf{FPE} = \hat{\sigma}^2 \frac{n+p}{n-p}$$

• AIC: for ARMA(p,q); approximate Kullback-Leibler discrepancy of the fitted model and the true model, a penalized likelihood method

$$AIC = -2\log(\hat{L}) + 2(p + q + 1)$$

• AICC: for $\mathsf{ARMA}(p,q)$; a bias-corrected version of AIC, a penalized likelihood method

AICC =
$$-2\log(\hat{L}) + 2(p+q+1) \cdot \frac{n}{n-p-q-2}$$

Residuals and rescaled residuals

• Residuals of an ARMA(p,q) process

$$\hat{W}_{t} = \frac{X_{t} - \hat{X}_{t} \left(\hat{\boldsymbol{\phi}}, \hat{\boldsymbol{\theta}}\right)}{\sqrt{r_{t-1} \left(\hat{\boldsymbol{\phi}}, \hat{\boldsymbol{\theta}}\right)}}, \quad t = 1, \dots, n$$

- Residuals $\{\hat{W}_t\}$ should be similar to white noises $\{Z_t\}$
- · Rescaled residuals

$$\hat{R}_t = \frac{\hat{W}_t}{\hat{\sigma}}, \quad \hat{\sigma} = \sqrt{\frac{\sum_{t=1}^n \hat{W}_t^2}{n}}$$

- Residuals residuals should be approximately WN(0,1)

Residual diagnostics

- 1. Plot $\{\hat{R}_t\}$ and look for patterns
- 2. Compute the sample ACF of $\{\hat{R}_t\}$
 - It should be close to the $\mathrm{WN}(0,1)$ sample ACF
- 3. Apply Chapter 1 tests for IID noises

References

 Brockwell, Peter J. and Davis, Richard A. (2016), Introduction to Time Series and Forecasting, Third Edition. New York: Springer