Notes: Intro to Time Series and Forecasting
— Ch5 Modeling and Forecasting with ARMA
Processes

Yingbo Li

05/04/2019



Table of Contents

Yule-Walker Estimation

Maximum Likelihood Estimation

Order Selection

Diagnostic Checking



Parameter estimation for ARMA(p, q)

When the orders p, ¢ are known, estimate the parameters
¢ =(d1,...,0p), 0=(01,...,0,), o°

— There are p + ¢ + 1 parameters in total
Preliminary estimations

— Yule-Walker and Burg’s algorithm: good for AR(p)
— Innovation algorithm: good for MA(q)
— Hannan-Rissanen algorithm: good for ARMA(p, ¢)

More efficient estimation: MLE

When the orders p, ¢ are unknown, use model selection
methods to select orders

— Minimize one-step MSE: FPE
— Penalized likelihood methods: AIC, AICC, BIC



Yule-Walker equations
« {X,} is a casual AR(p) process
Xe=01 X4 a1+ -+ 0p X4 p+ 24

* Multiplying each side by X;, X;_1,..., X;—,, respectively, and
taking expectation, we got the Yule-Walker equations
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+ Vector representation

Fp¢ - ’Ypa 02 = ’7(0) - ¢/7p



Yule-Walker estimator and its properties

« Yule-Walker estimators ¢ = (¢1, - - - , ¢,) are obtained by solving
the hatted version of the Yule-Walker equations

~ ~—1 R . Al
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« The fitted model is causal and 2 > 0
Xe=oiXeo1 4+ + pXe—p+ Zi,  Zi ~ WN(0,5%)

« Asymptotic normality
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Yule-Walker estimator is a moment estimator: because it
is obtained by equating theoretical and sample moments

+ Usually moment estimators have much higher variance than MLE

+ But Yule-Walker estimators of AR(p) process have the same
asymptotic distribution as the MLE

+ Moment estimators can fail for MA(¢) and general ARMA
— For example, MA(1): X, = Z; + 07,1 with {Z;} ~ WN(0, 0?).

W0 = (14800, A()=bs = p) =1

Moment estimator of 6 is obtained by solving
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This can yield complex  if |5(1)| > 1/2, which can happen if
p(l)y=1/2,ie,0=1



Innovations algorithm: estimate MA coefficients

+ Fitted innovations MA(m) model
Xe=Zi40mZia+ -+ 4 O Zimy {2} ~ WN(O, 51n)

where 9m and 9, are from the innovations algorithm with ACVF
replaced by the sample ACVF

» For a MA(q) process, the innovations algorithm estimator
0, = (041,...,04) is NOT consistent for (61, ...,0,)

A~

« Choice of m: increase m until the vector (6,1, ... ,0,,,)’ stabilizes



Likelihood function of a Gaussian time series

+ Suppose {X,} is a Gaussian time series with mean zero
+ Assume that covariance matrix I';, = E(X,,X/,) is nonsingular
+ One-step predictors using innovations algorithm: X; = 0 and

A

Xjy1 = PjXj41

A

2
with MSE vj = E (Xj+1 — Xj+1)
— Example: AR(1)
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* Likelihood function
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Maximum likelihood estimation of ARMA(p, ¢)

* Innovations MSE v; = o?r;, where r; depends on ¢ and 0
+ Maximizing the likelihood is equivalent to minimizing

—2log L(¢,0,0%) = nlog(c +Zlog (rj—1) (¢’ ),

where
SN
j=1
« MLE 42 can be expressed with MLE &) 9
X
5'2 _ ( )

n

« MLE ¢, 6 are obtained by minimizing

08 [ X@0] 4 L5 10gry )
j=1

Not depend on 2!



Asymptotic normality of MLE

+ When n is large, for a causal and invertible ARMA(p, q) process,

e (5]

 For an AR(p) process, MLE has the same asymptotic distribution
as the Yule-Walker estimator
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Examples of V

- AR(1)
V=1-¢
- AR(2)
vo| 1-9  —ail+e)
| —o(1+ p2) 1—¢3
« MA(1)
V=1-6;
« MA(2)
B 1—-603  61(1—6y)
V= [ ol —6) 163 ]
+ ARMA(1, 1)
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Order selection

« Why? Harm of using too large p, ¢ to fit models:

— Large errors arising from parameter estimation of the model
— Large MSEs of forecasts

« FPE: only for AR(p) processes

on+p
n—p

FPE =6

+ AIC: for ARMA(p, q); approximate Kullback-Leibler discrepancy of
the fitted model and the true model, a penalized likelihood method

AIC = —2log(L) +2(p+q+1)
+ AICC: for ARMA(p, q); a bias-corrected version of AIC, a

penalized likelihood method

AICC = —2log(L) +2(p+q+1) - ﬁ



Residuals and rescaled residuals

+ Residuals of an ARMA(p, ¢) process

Wt:Xt_Xt@s’é), t=1,...,n

Tt—1 (‘Aﬁ» 9)

— Residuals {1} should be similar to white noises {Z;}

[ W
, &5 = Zt::l t
n

— Residuals residuals should be approximately WN(0, 1)

» Rescaled residuals

W
Ry = -t

()%



Residual diagnostics

1. Plot {R;} and look for patterns
2. Compute the sample ACF of { R,}
— It should be close to the WN(0, 1) sample ACF

3. Apply Chapter 1 tests for IID noises



References

* Brockwell, Peter J. and Davis, Richard A. (2016), Introduction to
Time Series and Forecasting, Third Edition. New York: Springer



	Yule-Walker Estimation
	Maximum Likelihood Estimation
	Order Selection
	Diagnostic Checking

