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Feature extraction

• The mapping from textural data to real valued vectors is called
feature extraction or feature representation

• A process called tokenization is in charge of splitting text into
tokens (what we call here words) based on whitespace and
punctuation
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Features of words

• We often look at the lemma (the dictionary entry) of the word,
mapping forms such as booking, booked, books to their common
lemma book.

• A coarser process than lemmatization, that can work on any
sequence of letters, is called stemming. For example, picture,
pictures, pictured will all be stemmed to pictur
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Features of text: weighting

• When using the bag-of-words approach, it is common to use
TF-IDF weighting: TF× IDF

• Consider a document d which is part of a larger corpus D. For
each word w in d, its normalized count in the document is the
Term Frequency:

TF = #d(w)∑
w′∈d #d(w′)

• Inverse Document Frequency

IDF = log |D|
|{d ∈ D : w ∈ d}|
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Ngram features

• Word-bigrams, as well as trigrams of letters or words, are common

• A bag-of-bigrams representation is much more powerful than
bag-of-words, and in many cases proves very hard to beat

• Since it is hard to know a-priori which ngrams will be useful for a
given task, a common solution is to include all ngrams up to a
given length, and let the model regularization discard of the less
interesting ones by assigning them very low weights

6



Ngram and neural networks

• Note that vanilla neural network architectures such as MLP cannot
infer ngram features from a document on their own in the general
case. Thus, ngram features are also useful in the context of
nonlinear classification

• Bidirectional RNNs generalize the ngram concept even further,
and can be sensitive to information ngrams of varying lengths, as
well as ngrams with gaps in them
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NLP features for document topic classification

• A good set of features will be the bag-of words, perhaps plus a
bag-of-word-bigrams

• If we do not have many training examples

− We may benefit from pre-processing document by replacing each
word with its lemma

− We may also replace or supplement words by distributional
features such as word clusters or word-embedding vectors

• When using a bag-of-words, it is sometimes useful to weigh each
word with proportion to its informativeness, for example, using
TF-IDF weighting
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Dense encoding (feature embeddings)

• Each core feature (e.g., word) is embedded into a d dimensional
space, and represented as a vector in that space

• The dimension d is usually much smaller than the number of
features

− For example, each item in a vocabulary of 40000 items can be
represented as 100 or 200 dimensional vector

• In current research, d ranges between 50 to a few hundreds (and
in some extreme cases, thousands)

• A good rule of thumb would be to experiment with a few different
sizes, and choose a good trade-off between speed and task
accuracy
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Embeddings and neural networks

• The biggest change in the input when moving from linear to
deeper classfier is the move from sparse representations (one-hot
encoding) to a dense representation (embedding)

• Another difference is that we mostly need to extract only core
features and not feature combinations (we don not need to
manually do feature engineering)

• One benefit of using dense and low-dimensional vectors
(embeddings) is computational: the majority of neural network
toolkits do not play well with very high-dimensional, sparse vectors
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One-hot vectors vs dense embeddings

• The main benefit of the dense representations is in generalization
power: if we believe some features may provide similar clues, it is
worthwhile to provide a representation that is able to capture
these similarities

• When one-hot representations might be better than embeddings:
when the feature space is relatively small and the training data is
plentiful
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Combining dense vectors: window based features

• The prominent options are concatenation, summation (or
averaging), and combinations of the two

• Consider the case of encoding a window of size k = 2 to each
side of a focus word. The word vectors of the window items are
a, b, c, d

− Summation: if we do not care about the relative positions of the
words within the window, we can encode the window as a sum
a + b + c + d

− Concatenation: if we do care about the order, then we should
rather use concatenation [a; b; c; d]

− We may not care about the order, but would want to consider words
further away from the context word less important. Then we can
use a weighted sum 1

2 a + b + c + 1
2 d

− We can mix-and-match. For example, [(a + b); (c + d)]
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Variable number of features: continuous bag of words
• Feed-forward networks assume a fixed dimensional inputs

• When we need to represent an unbounded number of features
using a fixed size vector, one way is through continuous bag of
words (CBOW). For features f1, . . . , fk, CBOW is the average of
and their corresponding vectors v(f1), . . . , v(fk), i.e.,

CBOW(f1, . . . , fk) = 1
k

k∑
i=1

v(fi)

• A simple variation is weighted CBOW, where each feature fi has
weight ai

WCBOW(f1, . . . , fk) = 1∑k
i=1 ai

k∑
i=1

aiv(fi)

− For example, in a document classification task, we can use TF-IDF
as the weights
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Relationship Between One-Hot and Dense Vectors
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Relationship between one-hot and dense vectors
• Using one-hot vectors as input when training a neural network is

to dedicate the first layer of the network to learning a dense
embedding vector for each feature based on the training data

• When using dense vectors, each categorical feature value (e.g.,
word) fi is mapped to a dense, d-dimensional vector v(fi). This
mapping is performed through the use of an embedding layer or a
lookup layer

• For a vocabulary of |V | words, the collection of vectors can be
thought of as a |V | × d embedding matrix E, in which each row
corresponds to an embedded feature

• Let fi be the one-hot representation of feature fi, then its
embedding row is

v(fi) = fiE

• The word vectors are often concatenated to each other before
being passed to the next layer
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Padding and unknown words

• In some cases the feature extractor will look for things that do not
exist. The suggested solution is to add a special padding symbol
to the embedding vocabulary

• For out-of-vocabulary (OOV) items, it is recommended to reserve
a special symbol Unk, representing an unknown token

• In any case, it is advised to not share the padding and the
unknown vectors, as they reflect two very different conditions
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Word dropout

• Reserving a special embedding vector for unknown words is not
enough, because if all the features in the training set have their
own embedding vectors, the unknown-word condition will not be
observed in training

• Since the model needs to be exposed to the unknown-word
condition during training, we can use word-dropout, i.e., when
extracting features in training, randomly replace words with the
unknown symbol

• This can be based on word’s frequency: less frequent words will
be more likely to be replaced by the unknown symbol than
frequent ones
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Feature combinations

• One of the promises of the nonlinear neural network models is
that one needs to define only the core features. The nonlinearity
of the classifier, as defined by the network structure, is expected
to take care of finding the indicative feature combinations,
alleviating the need for feature combination engineering

• Computational complexity of classification in kernel methods
scales linearly with the size of the training data, make them too
slow for most practical purpose

• Computational complexity of classification using neural networks
scales linearly with the size of the network, regardless of the
training data size
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