
Notes: Neural Network Methods for Natural
Language Processing – Part 2 Working with
Natural Language Data, Ch9-11

Yingbo Li

01/20/2021

1

Table of Contents

Ch9 Language Modeling

Language Modeling with the Markov Assumption

Neural Language Models

Ch10 Pre-trained Word Representations

Word Simiarlity Matrices and SVD

Word2Vec Model

Choice of Contexts

Ch11 Using Word Embeddings

Resources of Common Pre-Training Word Embeddings

Usages: Find Similarity, Word Analogies

2

Language modeling with the Markov assumption
• The task of language modeling is to assign a probability to any

sequence of words w1:n, i.e., to estimate

P (w1:n) = P (w1)P (w2 | w1)P (w3 | w1:2) · · ·P (wn | w1:n−1)

• Non-RNN language models make use of the Markov assumption:
the future is independent of the past given the present

− A kth order Markov assumption assumes

P (wi+1 | w1:i) ≈ P (wi+1 | wi−k+1:i)

− Thus, the probability of the sentence becomes

P (w1:n) =
n∏

i=1
P (wi | wi−k:i−1)

where w−k, . . . , w0 are special padding symbols

− This chapter discusses kth order language model. Chapter 14 will
discuss language models without the Markov assumption

3

Perplexity: evaluation of language models

• An intrinsic evaluation of language models is perplexity over
unseen sentences

• Given a text corpus of n words w1, . . . , wn and a language model
function LM , the perplexity of LM with respect to the corpus is

2−
1
n

∑n

i=1 log2 LM(wi|w1:i−1)

• Good language models will assign high probabilities to the events
in the corpus, resulting in lower perplexity values

• Perplexities are corpus specific, so perplexities of two language
models are only comparable with respect to the same evaluation
corpus

4

Neural language models

• Input to the neural network is a kgram of words w1:k, and the
output is a probability distribution over the next word

5

Approximation of the softmax operation in cross entropy

• Cross entropy loss works very well, but requires the use of a
costly softmax operation which can be prohibitive for very large
vocabularies

• This promotes the use of alternative losses and/or approximations

− Hierarchical softmax (using tree)
− Self-normalizing approaches, e.g., noise-contrastive estimation

(NCE)
− Sampling approaches

• NCE: replaces the cross-entropy objective with a collection of
binary classification problems, requiring the evaluation of the
assigned scores for k random words rather than the entire
vocabulary

6

Using language models for generation

• Predict a probability distribution over the first word conditioned on
the start symbol, and draw a random word according to the
predicted distribution

• Then predict a probability distribution over the second word
conditioned on the first

• And so on, until predicting the end-of-sequence < /s > symbol

• Already with k = 3 this produces very passable text, and the
quality improves with higher orders

• Another option is to use beam search in order to find a sequence
with a globally high probability

7

Random initialization of word embedding models

• The Word2Vec model initializes word vectors to uniformly sampled
numbers in the range

[
− 1

2d , 1
2d

]
• Another option is xavier initialization, initializing with uniformly

sampled numbers in the range
[
−
√

6√
d
,
√

6√
d

]

8

Unsupervised training of word embedding vectors

• Key idea: one would like the embedding vectors of “similar” words
to have similar vectors

• Word similarity is from the distributional hypothesis: words are
similar if they appear in similar contexts

• The different methods all create supervised training instances in
which the goal is to

− either predict the word from its context,
− or predict the context from the word

• An important benefit of training word embedding on large amount
of unannotated data: it provides vector representations for words
that do not appear in the supervised training set

9

Word-context matrices

• Denote VW the st of words and VC the set of possible contexts

• Assume that wi is the ith word in the words vocabulary and cj is
the jth word in the context vocabulary

• The matrix Mf ∈ R|VW |×|VC | is the word-context matrix, with f
being an association measure of the strength between a word and
a context

Mf
[i,j] = f(wi, cj)

10

Similarity measures

• When words are represented as vectors, one can computing
similarity by cosine similarity

simcos = u · v
‖u‖2‖v‖2

=
∑

i u[i] · v[i]√∑
i(u[i])2

√∑
i(v[i])2

11

Word-context weighting and PMI

• Denote by #(w, c) the number of times word w occurred in the
context c in the corpus D, and let |D| be the corpus size

• Pointwise mutual information (PMI)

PMI(w, c) = log P (w, c)
P (w)P (c) = log #(w, c)|D|

#(w)#(c)

• To resolve the log 0 issue for pairs (w, c) never observed in the
corpus, we can use the positive PMI (PPMI)

PPMI(w, c) = max{PMI(w, c), 0}

• A deficiency of PMI: it tends to assign high value to rare events

• Solution: it is advisable to apply a count threshold (to discount
rare events) before using the PMI metric

12

Dimensionality reduction through matrix factorization

• Potential obstacle of representing words as the explicit set of
contexts: data sparsity, some entries in M may be incorrect
because we don’t have enough data points

• Also, the explicit word vectors (row in M) are of a very high
dimension

• Both issues can be alleviated by using dimension reduction
techniques, e.g., singular value decomposition (SVD)

13

Mathematics of SVD

• A m× n matrix M can be factorized into

M = U D VT

m× n m×m m× n n× n

− Matrix D is diagonal. Matrices U and V are orthonormal, i.e., their
rows are unit-length and orthogonal to each other

• Dimension reduction under SVD: with a small value d,

M′ = Ũ D̃ ṼT

m× n m× d d× d d× n

− M′ is the best rank-d approximation of M under the L2 loss

14

Use SVD to obtain word vectors

• The low-dimensional rows of

W = ŨD̃

are low-rank approximations of the high-dimensional rows of the
original matrix M

− In the sense that computing the dot product between rows of W is
equivalent to computing dot product between the reconstructed
matrix M′.

W[i] ·W[j] = M′
[i] ·M′

[j]

• When using SVD for word similarity, the rows of M correspond to
words, the columns to contexts. Thus the rows of W are
low-dimensional word representations.

• In practice, it is often better to not use W = ŨD̃, but instead to
use the more balanced version W = Ũ

√
D̃, or even directly using

W = Ũ
15

Collobert and Weston’s algorithm

• Instead of computing a probability distribution over target words
given a context, Collobert and Weston’s model only attempts to
assign a score to each word, such that the correct word scores
above the incorrect ones (p123)

• Denote w the target word, c1:k an ordered list of context items

• Let vw(w) and vc(c) be embedding functions mapping word and
context indices to demb dimensional vectors

16

Word2Vec model: overview

• Word2Vec is a software package implementing
− two different context representations (CBOW and Skip-Gram) and
− two different optimization objectives (Negative-Sampling and

Hierarchical Softmax)
• Here, we focus on the Negative-Sampling (NS) objective

17

Word2Vec model: negative sampling
• Consider a set D of correct word-context pairs, and a set D̄ of

incorrect word-context pairs

• Goal: estimate the probability P (D = 1 | w, c), which should be
high (1) for pairs from D and low (0) for pairs from D̄

• The probability function: a sigmoid over the score s(w, c)

P (D = 1 | w, c) = 1
1 + e−s(w,c)

• The corpus-wide objective function is to maximize the
log-likelihood of the data D ∪ D̄

L(Θ; D, D̄) =
∑

(w,c)∈D

log P (D = 1 | w, c)+
∑

(w,c)∈D̄

log P (D = 0 | w, c)

• NS approximates the softmax function (normalizing term
expensive to compute) with sigmoid functions

18

Word2Vec: NS, continued

• The positive examples D are generated from a corpus

• The negative samples D̄ can be generated as follows

− For each good pair (w, c) ∈ D, sample k words w1:k and add each
of (wi, c) as a negative example to D̄. This results in D̄ being k
times as large as D. The number of negative samples k is a
parameter of the algorithm

− The negative words w can be sampled according to their
corpus-based frequency. Actually in Word2Vec implementation, a
smoothed version in which the counts are raised to the power of 3

4
before normalizing:

#(w)0.75∑
w′ #(w′)0.75

This version gives more relative weights to less frequent words, and
results in better word similarities in practice.

19

Word2Vec: CBOW
• For a multi-word context c1:k, the CBOW variant of Word2Vec

defines the context vector c to be a sum of the embedding vectors
of the context components

c =
k∑

i=1
ci

• The score of the word-context pair is simply defined as

s(w, c) = w · c

• Thus, the probability of a true pair is

P (D = 1 | w, c1:k) = 1
1 + e−(w·c1+w·c2+···+w·ck)

• The CBOW variant loses the order information between the
context’s elements

• In return, it allows the use of variable-length contexts
20

Word2Vec: Skip-Gram

• For a k-element context c1:k, the skip-gram variant assumes that
the elements ci in the context are independent from each other,
essentially treating them as k different contexts:
(w, c1), (w, c2), . . . , (w, ck)

• The scoring function is the same as the CBOW version

s(w, ci) = w · ci

• The probability is a product of k terms

P (D = 1 | w, c1:k) =
k∏

i=1
P (D = 1 | w, ci) =

k∏
i=1

1
1 + e−w·ci

• While the independence assumption is strong, the skip-gram
variant is very effective in practice

21

GloVe

• GloVe constructs an explicit word-context matrix, and trains the
word and context vectors w and c attempting to satisfy

w · c + b[w] + b[c] = log #(w, c), ∀(w, c) ∈ D

where b[w] and b[c] are word-specific and context-specific trained
biases

22

Choice of contexts: window approach

• The most common is a sliding window approach, containing a
sequence of 2m + 1 words. The middle word is called the focus
word and the m words to each side are the contexts

• Effective window size: usually 2-5.

− Larger windows tend to produce more topical similarities (e.g.,
“dog”, “bark”, and “leash” will be grouped together, as well as
“walked”, “run”, and “walking”)

− Smaller windows tend to produce more functional and syntactic
similarities (e.g., “Poodle”, “Pitbull”, and “Rottweiler”, or “walking”,
“running”, and “approaching”)

• Many variants on the window approach are possible. One may

− lemmatize words before learning
− apply text normalization
− filter too short of too long sentences
− remove capitalization

23

Limitations of distributional methods

• Black sheep: people are less likely to mention known information
than they are to mention novel ones

− For example, when people talk of white sheep, they will likely refer
to them as sheep, while for black sheep are are much more likely to
retain the color information and say black sheep

• Antonyms: words are opposite of each other (good vs bad, buy vs
sell, hot vs cold) tend to appear in similar contexts

24

Common pre-training word embeddings

• Efficient implementation of Word2Vec

− GenSim python package: https://radimrehurek.com/gensim/

• Efficient implementation of GloVe

− https://nlp.stanford.edu/projects/glove/

25

https://radimrehurek.com/gensim/
https://nlp.stanford.edu/projects/glove/

Pre-trained word embedding usages

• Calculate word similarity, e.g., using cosine similarity

• Word clustering, e.g., using KMeans

• Find similar words

− With row-normalized embedding matrix, the cosine similarity
between two words w1 and w2 is

simcos(w1, w2) = E[w1] ·E[w2]

− We are often interested in the k most similar words to a given word
w. Let w = E[w], then the similarity to all other words can be
computed by the matrix-vector multiplication

s = Ew

26

More similarity measures

• Similarity to a group of words: average similarity to the items in
the group

s[w] = sim(w, w1:k) = E(w1 + · · ·+ wk)/k

• Short document similarity: consider two documents
D1 = w1

1, . . . , w1
m and D2 = w2

1, . . . , w2
n,

simdoc(D1, D2) =
m∑

i=1

n∑
j=1

cos(w1
i , w2

j)

=
(

m∑
i=1

w1
i

)
·

 n∑
j=1

w2
j



27

Word analogies

• One can perform “algebra” on the word vectors and get
meaningful results

− For example,

wking −wman + wwoman ≈ wqueen

• Analogy solving task: to answer analogy questions of the form

man : woman→ king :?

• Solve the analogy question by maximization

analogy(m : w → k :?) = arg max
v∈V \{m,w,k}

cos(v, k−m + w)

28

Practicalities and pitfalls

• While off-the-shelf, pre-trained word embeddings can be
downloaded and used, it is advised to not just blindly download
word embeddings and treat them as a black box

• Be aware of choices such as the source of the training corpus

− Larger training corpus is not always better. A smaller but cleaner, or
smaller but more domain-focused corpus are often more effective

• When using off-the-shelf embedding vectors, it is better to
use the same tokenization and text normalization schemes
that were used when deriving the corpus

29

References

• Goldberg, Yoav. (2017). Neural Network Methods for Natural
Language Processing, Morgan & Claypool

30

	
	Ch9 Language Modeling
	Language Modeling with the Markov Assumption
	Neural Language Models

	Ch10 Pre-trained Word Representations
	Word Simiarlity Matrices and SVD
	Word2Vec Model
	Choice of Contexts

	Ch11 Using Word Embeddings
	Resources of Common Pre-Training Word Embeddings
	Usages: Find Similarity, Word Analogies

