
Notes: Neural Network Methods for Natural
Language Processing – Part 3 Specialized
Architectures, Ch13 CNN

Yingbo Li

05/17/2021

1



Table of Contents

Ch13 Ngram Detectors: Convolutional Neural Networks

CNN Overivew

Basic Convolution + Pooling

Hierarchical Convolutions

2



Overview on CNN and RNN for NLP

• CNN and RNN architectures explored in this part of the book are
primarily used as feature extractors

• CNNs and RNNs as Lego bricks: one just needs to make sure that
input and output dimensions of the different components match

3



CNN overview for NLP

• CBOW assigns the following two sentences the same
representations

− “it was not good, it was actually quite bad”
− “it was not bad, it was actually quite good”

• Looking at ngrams is much more informative than looking at a
bag-of-words

• This chapter introduces the convolution-and-pooling (also called
convolutional neural networks, or CNNs), which is tailored to this
modeling problem

4



Benefits of CNN for NLP

• CNNs will identify ngrams that are predictive for the task at hand,
without the need to pre-specify an embedding vector for each
possible ngram

• CNNs also allows to share predictive behavior between ngrams
that share similar components, even if the exact ngrams was
never seen at test time

• Example paper: link

5

https://www.aclweb.org/anthology/P14-1062.pdf


Convolution

• The main idea behind a convolution and pooling architecture of
language tasks is to apply a non-linear (learned) function over
each instantiation of a k-word sliding window over the sentence

• This function (also called "filter") transforms a window of k words
into a scalar value

− Intuitively, when the sliding window of size k is run over a sequence,
the filter function learns to identify informative kgrams

• Several such filters can be applied, resulting in ` dimensional
vector (each dimension corresponding to one filter) that captures
important properties of the words in the window

6



Pooling

• Then a "pooling" operation is used to combine the vectors
resulting from the different windows into a single `-dimensional
vector, by taking the max or the average value observed in each of
the ` dimensions over the different windows

− The intention is to focus on the most important “features” in the
sentence, regardless of their location

• The resulting `-dimensional vector is then fed further into a
network that is used for prediction

7



1D convolutions over text

• A filter is a dot-product with a weight vector parameter u, which is
often followed by nonlinear activation function

• Define the operation ⊕(wi:i+k−1) to be the concatenation of the
vectors wi, . . . , wi+k−1. The concatenated vector of the ith
window is then

xi = ⊕(wi:i+k−1) = [wi; wi+1; . . . ; wi+k−1] ∈ Rk·demb

• Apply the filter to each window-vector, resulting scalar value pi:

pi = g(xi · u)
pi ∈ R, xi ∈ Rk·demb , u ∈ Rk·demb

8



Joint formulation of 1D convolutions

• It is customary to use ` different filters u1, . . . , u`, which can be
arranged into a matrix U, and a bias vector b is often added

pi = g(xi ·U + b)
pi ∈ R`, xi ∈ Rk·demb , U ∈ Rk·demb×`, b ∈ R`

• Ideally, each dimension captures a different kind of indicative
information

• The main idea behind the convolution layer: to apply the
same parameterized function over all kgrams in the
sequence. This creates a sequence of m vectors, each
representing a particular kgram in the sequence

9



Narrow vs wide convolutions

• For a sentence of length n with a window of size k

• Narrow convolutions: there are n− k + 1 positions to start the
sequence, and we get n− k + 1 vectors p1:n−k+1

• Wide convolutions: an alternative is to pad the sentence with k − 1
padding-words to each side, resulting in n + k + 1 vectors p1:n+k+1

• We use m to denote the number of resulting vectors

10



Vector pooling

• Applying the convolution over the text results in m vectors p1:m,
each pi ∈ R`

• These vectors are then combined (pooled) into a single vector
c ∈ R` representing the entire sequence

• During training, the vector c is fed into downstream network layers
(e.g., an MLP), culminating in an output layer which is used for
prediction

11



Different pooling methods

• Max pooling: the most common, taking the maximum value
across each dimension j = 1, . . . , `

c[j] = max
1≤i≤m

pi,[j]

− The effect of the max-pooling operation is to get the most salient
information across window positions

• Average pooling

c = 1
m

m∑
i=1

pi

• K-max pooling: the top k values in each dimension are retained
instead of only the best one, while preserving the order in which
they appeared in the text

12



An illustration of convolution and pooling

13



Variations

• Rather than a single convolutional layer, several convolutional
layers may be applied in parallel

• For example, we may have four different convolutional layers,
each with a different window size in the range 2-5, capturing
kgram sequences of varying lengths

14



Hierarchical convolutions

• The 1D convolution approach described so far can the thought of
as a ngram detector: a convolution layer with a window of size k is
learning to identify indicative k-gram in the input

p1:m = CONVk
U,b(w1:n)

• We can extend this into a hierarchy of convolutional layers with r
layers that feed into each other

p1
1:m1 = CONVk1

U1,b1(w1:n)

p2
1:m2 = CONVk2

U2,b2(p1
1:m1)

· · ·
pr

1:mr
= CONVkr

Ur,br (pr−1
1:mr−1)

15



Hierarchical convolutions, continued
• For r layers with a window of size k, each vector pr

i will be
sensitive to a window of r(k − 1) + 1 words

• Moreover, the vector pr
i can be sensitive to gappy-ngrams of

k + r − 1 works, potentially capturing patterns such as “not ___
good” or “obvious ___ predictable ___ plot”, where ___ stands for
a short sequence of words

16



Strides

• So far, the convolution operation is applied to each k-word window
in the sequence, i.e., windows starting at indices 1, 2, 3, . . .. This is
said to have a stride of size 1

• Larger strides are also possible. For example, with a stride of size
2, the convolution operation will be applied to windows starting at
indices 1, 3, 5, . . .

• Convolution with window size k and stride size s:

p1:m = CONVk,s
U,b(w1:n)

pi = g
(
⊕
(
w1+(i−1)s:(s+k)i

)
·U + b

)

17



An illustration of stride size

18



References

• Goldberg, Yoav. (2017). Neural Network Methods for Natural
Language Processing, Morgan & Claypool

19


	
	Ch13 Ngram Detectors: Convolutional Neural Networks
	CNN Overivew
	Basic Convolution + Pooling
	Hierarchical Convolutions


