Notes: Neural Network Methods for Natural
Language Processing — Part 3 Specialized
Architectures, Ch13 CNN

Yingbo Li

05/17/2021



Table of Contents

Ch13 Ngram Detectors: Convolutional Neural Networks
CNN Overivew
Basic Convolution + Pooling

Hierarchical Convolutions



Overview on CNN and RNN for NLP

e CNN and RNN architectures explored in this part of the book are
primarily used as feature extractors

* CNNs and RNNs as Lego bricks: one just needs to make sure that
input and output dimensions of the different components match



CNN overview for NLP

e CBOW assigns the following two sentences the same
representations

— ‘it was not good, it was actually quite bad”
— ‘it was not bad, it was actually quite good”

¢ Looking at ngrams is much more informative than looking at a
bag-of-words

e This chapter introduces the convolution-and-pooling (also called
convolutional neural networks, or CNNs), which is tailored to this
modeling problem



Benefits of CNN for NLP

¢ CNNs will identify ngrams that are predictive for the task at hand,
without the need to pre-specify an embedding vector for each
possible ngram

* CNNs also allows to share predictive behavior between ngrams
that share similar components, even if the exact ngrams was
never seen at test time

e Example paper: link


https://www.aclweb.org/anthology/P14-1062.pdf

Convolution

¢ The main idea behind a convolution and pooling architecture of
language tasks is to apply a non-linear (learned) function over
each instantiation of a k-word sliding window over the sentence

¢ This function (also called "filter") transforms a window of k& words
into a scalar value

— Intuitively, when the sliding window of size k is run over a sequence,
the filter function learns to identify informative kgrams

e Several such filters can be applied, resulting in ¢ dimensional
vector (each dimension corresponding to one filter) that captures
important properties of the words in the window



Pooling

¢ Then a "pooling" operation is used to combine the vectors
resulting from the different windows into a single ¢-dimensional
vector, by taking the max or the average value observed in each of
the ¢ dimensions over the different windows

— The intention is to focus on the most important “features” in the
sentence, regardless of their location

® The resulting /-dimensional vector is then fed further into a
network that is used for prediction



1D convolutions over text

¢ A filter is a dot-product with a weight vector parameter u, which is
often followed by nonlinear activation function

¢ Define the operation &(w;.;+;_1) to be the concatenation of the
vectors w;, ..., w;1r_1. Ihe concatenated vector of the ith
window is then

Xi = ®(Wisiph-1) = [Wis Wit1 ... Wipp_1] € RFemd
* Apply the filter to each window-vector, resulting scalar value p;:

pi = g(xi - u)
pieR, x;€ Rk'demb, ue [RF-demb



Joint formulation of 1D convolutions

e |tis customary to use / different filters uy, .. ., u,, which can be
arranged into a matrix U, and a bias vector b is often added

pi =g(xi-U+Db)
pi R, x; € RFdem U g RFdemoX b e R

e |deally, each dimension captures a different kind of indicative
information

¢ The main idea behind the convolution layer: to apply the
same parameterized function over all kgrams in the
sequence. This creates a sequence of m vectors, each
representing a particular £gram in the sequence



Narrow vs wide convolutions

e For a sentence of length n with a window of size &

e Narrow convolutions: there are n — k + 1 positions to start the
sequence, and we get n — k + 1 vectors p1.,—k+1

Wide convolutions: an alternative is to pad the sentence with &k — 1
padding-words to each side, resulting in n+ k + 1 vectors p1.,+x+1

e We use m to denote the number of resulting vectors



Vector pooling

* Applying the convolution over the text results in m vectors p1.m,,
each p; € Rf

e These vectors are then combined (pooled) into a single vector
c € Rf representing the entire sequence

¢ During training, the vector c is fed into downstream network layers
(e.g., an MLP), culminating in an output layer which is used for
prediction



Different pooling methods

* Max pooling: the most common, taking the maximum value

across each dimension j =1,...,¢
bl = B Pili]

— The effect of the max-pooling operation is to get the most salient
information across window positions

¢ Average pooling

1 m
C:E;Pi

e /{-max pooling: the top k values in each dimension are retained
instead of only the best one, while preserving the order in which
they appeared in the text



An illustration of convolution and pooling

6 x3

the quick brown fox jumped over the lazy dog

e quick brown [600660)— MUL-ub>— [068)]
quick brown fox
jumped over the . ——CMULstanh >—— [0 @)
over the lazy . < MULstanh>—

convolution pooling

Figure 13.2: 1D convolution+pooling over the sentence “the quick brown fox jumped over the lazy
dog.” This is a narrow convolution (no padding is added to the sentence) with a window size of 3.
Each word is translated to a 2-dim embedding vector (not shown). The embedding vectors are then
concatenated, resulting in 6-dim window representations. Each of the seven windows is transfered
through a 6 x 3 filter (linear transformation followed by element-wise tanh), resulting in seven 3-
dimensional filtered representations. Then, a max-pooling operation is applied, taking the max over
each dimension, resulting in a final 3-dimensional pooled vector.



Variations

¢ Rather than a single convolutional layer, several convolutional
layers may be applied in parallel

e For example, we may have four different convolutional layers,
each with a different window size in the range 2-5, capturing
kgram sequences of varying lengths



Hierarchical convolutions

e The 1D convolution approach described so far can the thought of
as a ngram detector: a convolution layer with a window of size k is
learning to identify indicative k-gram in the input

P1m = CONV]ICJ’b (Wl:n)

¢ We can extend this into a hierarchy of convolutional layers with r
layers that feed into each other

pi:m1 - CONV}{?l’bl (len)
p%:mg = CONVI{?Q,];)Q (p%ml)

kr —1
p7lﬂzmr = CONVUW',b"(pg:mT_l)



Hierarchical convolutions, continued

* For r layers with a window of size k, each vector p; will be
sensitive to a window of r(k — 1) + 1 words

* Moreover, the vector p; can be sensitive to gappy-ngrams of
k + r — 1 works, potentially capturing patterns such as “not ___
good” or “obvious ___ predictable __ plot”, where ___ stands for
a short sequence of words
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the actual service was not very good

Figure 13.3: Two-layer hierarchical convolution with k=2.



Strides

e So far, the convolution operation is applied to each k-word window
in the sequence, i.e., windows starting at indices 1,2, 3,.... This is
said to have a stride of size 1

e Larger strides are also possible. For example, with a stride of size
2, the convolution operation will be applied to windows starting at
indices 1, 3,5, ...

e Convolution with window size k and stride size s:
P1:m = CONV{}, (Wip)
pPi=g (@ (Wl—i-(i—l)s:(s—i-k)i) U+ b)



An illustration of stride size

k=3,5=1

=2

k=3,5=
©

k=3,5=3

Figure 13.4: Strides. (a—c) Convolution layer with k=3 and stride sizes 1, 2, 3.
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