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Overview on CNN and RNN for NLP

• CNN and RNN architectures explored in this part of the book are
primarily used as feature extractors

• CNNs and RNNs as Lego bricks: one just needs to make sure that
input and output dimensions of the different components match
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CNN overview for NLP

• CBOW assigns the following two sentences the same
representations

− “it was not good, it was actually quite bad”
− “it was not bad, it was actually quite good”

• Looking at ngrams is much more informative than looking at a
bag-of-words

• This chapter introduces the convolution-and-pooling (also called
convolutional neural networks, or CNNs), which is tailored to this
modeling problem
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Benefits of CNN for NLP

• CNNs will identify ngrams that are predictive for the task at hand,
without the need to pre-specify an embedding vector for each
possible ngram

• CNNs also allows to share predictive behavior between ngrams
that share similar components, even if the exact ngrams was
never seen at test time

• Example paper: link
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Convolution

• The main idea behind a convolution and pooling architecture of
language tasks is to apply a non-linear (learned) function over
each instantiation of a k-word sliding window over the sentence

• This function (also called "filter") transforms a window of k words
into a scalar value

− Intuitively, when the sliding window of size k is run over a sequence,
the filter function learns to identify informative kgrams

• Several such filters can be applied, resulting in ` dimensional
vector (each dimension corresponding to one filter) that captures
important properties of the words in the window
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Pooling

• Then a "pooling" operation is used to combine the vectors
resulting from the different windows into a single `-dimensional
vector, by taking the max or the average value observed in each of
the ` dimensions over the different windows

− The intention is to focus on the most important “features” in the
sentence, regardless of their location

• The resulting `-dimensional vector is then fed further into a
network that is used for prediction
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1D convolutions over text

• A filter is a dot-product with a weight vector parameter u, which is
often followed by nonlinear activation function

• Define the operation ⊕(wi:i+k−1) to be the concatenation of the
vectors wi, . . . , wi+k−1. The concatenated vector of the ith
window is then

xi = ⊕(wi:i+k−1) = [wi; wi+1; . . . ; wi+k−1] ∈ Rk·demb

• Apply the filter to each window-vector, resulting scalar value pi:

pi = g(xi · u)
pi ∈ R, xi ∈ Rk·demb , u ∈ Rk·demb
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Joint formulation of 1D convolutions

• It is customary to use ` different filters u1, . . . , u`, which can be
arranged into a matrix U, and a bias vector b is often added

pi = g(xi ·U + b)
pi ∈ R`, xi ∈ Rk·demb , U ∈ Rk·demb×`, b ∈ R`

• Ideally, each dimension captures a different kind of indicative
information

• The main idea behind the convolution layer: to apply the
same parameterized function over all kgrams in the
sequence. This creates a sequence of m vectors, each
representing a particular kgram in the sequence
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Narrow vs wide convolutions

• For a sentence of length n with a window of size k

• Narrow convolutions: there are n− k + 1 positions to start the
sequence, and we get n− k + 1 vectors p1:n−k+1

• Wide convolutions: an alternative is to pad the sentence with k − 1
padding-words to each side, resulting in n + k + 1 vectors p1:n+k+1

• We use m to denote the number of resulting vectors
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Vector pooling

• Applying the convolution over the text results in m vectors p1:m,
each pi ∈ R`

• These vectors are then combined (pooled) into a single vector
c ∈ R` representing the entire sequence

• During training, the vector c is fed into downstream network layers
(e.g., an MLP), culminating in an output layer which is used for
prediction
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Different pooling methods

• Max pooling: the most common, taking the maximum value
across each dimension j = 1, . . . , `

c[j] = max
1≤i≤m

pi,[j]

− The effect of the max-pooling operation is to get the most salient
information across window positions

• Average pooling

c = 1
m

m∑
i=1

pi

• K-max pooling: the top k values in each dimension are retained
instead of only the best one, while preserving the order in which
they appeared in the text
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An illustration of convolution and pooling

13



Variations

• Rather than a single convolutional layer, several convolutional
layers may be applied in parallel

• For example, we may have four different convolutional layers,
each with a different window size in the range 2-5, capturing
kgram sequences of varying lengths
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Hierarchical convolutions

• The 1D convolution approach described so far can the thought of
as a ngram detector: a convolution layer with a window of size k is
learning to identify indicative k-gram in the input

p1:m = CONVk
U,b(w1:n)

• We can extend this into a hierarchy of convolutional layers with r
layers that feed into each other

p1
1:m1 = CONVk1

U1,b1(w1:n)

p2
1:m2 = CONVk2

U2,b2(p1
1:m1)

· · ·
pr

1:mr
= CONVkr

Ur,br (pr−1
1:mr−1)
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Hierarchical convolutions, continued
• For r layers with a window of size k, each vector pr

i will be
sensitive to a window of r(k − 1) + 1 words

• Moreover, the vector pr
i can be sensitive to gappy-ngrams of

k + r − 1 works, potentially capturing patterns such as “not ___
good” or “obvious ___ predictable ___ plot”, where ___ stands for
a short sequence of words
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Strides

• So far, the convolution operation is applied to each k-word window
in the sequence, i.e., windows starting at indices 1, 2, 3, . . .. This is
said to have a stride of size 1

• Larger strides are also possible. For example, with a stride of size
2, the convolution operation will be applied to windows starting at
indices 1, 3, 5, . . .

• Convolution with window size k and stride size s:

p1:m = CONVk,s
U,b(w1:n)

pi = g
(
⊕
(
w1+(i−1)s:(s+k)i

)
·U + b

)
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An illustration of stride size
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