
Notes: Neural Network Methods for Natural
Language Processing – Part 3 Specialized
Architectures, Ch14-16 RNNs

Yingbo Li

05/18/2021

1



Table of Contents

Ch14 Recurrent Neural Networks: Modeling Sequences and Stacks

The RNN Abstraction

Common RNN usages

Bidirectional RNNs and Deep RNNs

Ch15 Concrete Recurrent Neural Network Architectures

Simple RNN

Gated Architectures: LSTM and GRU

Ch16 Modeling with Recurrent Networks

Sentiment Classification

2



RNNs overview

• RNNs allow representing arbitrarily sized sequential inputs in
fixed-sized vectors, while paying attention to the structured
properties of the inputs

• This chapter describes RNNs as an abstraction: an interface for
translating a sequence of inputs into a fixed sized output, that can
be plugged as components in larger networks

• RNNs allow for language models that do not make the markov
assumption, and condition the next word on the entire sentence
history

• It is important to understand that the RNN does not do much on
its own, but serves as a trainable component in a larger network

3



The RNN abstraction
• On a high level, the RNN is a function that

− Takes as input an arbitrary length ordered sequence of n
din-dimensional vectors x1:n = x1, . . . ,xn, and

− Returns as output a single dout dimensional vector yn

− The output vector yn is then used for further prediction

yn = RNN(x1:n)
xi ∈ Rdin , yn ∈ Rdout

• This implicitly defines an output vector yi for each prefix x1:i. We
denote by RNN∗ the function returning this sequence

y1:n = RNN∗(x1:n)
yi = RNN(x1:i)
xi ∈ Rdin , yi ∈ Rdout

• The RNN function provides a framework for conditioning on the
entire history x1, . . . ,xi without the Markov assumption

4



The R function and the O function

• The RNN is defined recursively, by means of a function R taking
as the state vector si−1 and an input vector xi and returning a new
state vector si

• The state vector si is then mapped to an output vector yi using a
simple deterministic function O

si = R(si−1,xi)
yi = O(si)

• The functions R and O are the same across the sequence
positions, but the RNN keeps track of the states of computation
through the state vector si that is kept and being passed across
invocations of R

5



An illustration of the RNN

• We include here the parameters θ in order to highlight the fact that
the same parameters are shared across all time steps

6



An illustration of the RNN (unrolled)

7



Common RNN usage patterns: acceptor

• Acceptor: based on the supervision signal only at the final output
vector yn

− Typically, the RNN’s output vector yn is fed into a fully connected
layer or an MLP, which produce a prediction

8



Common RNN usage patterns: encoder

• Encoder: also only uses the final output vector yn. Here yn is
treated as an encoding of the information in the sequence, and is
used as additional information together with other signals

9



Common RNN usage patterns: transducer

• Transducer: The loss of unrolled sequence will be used

• A natural use case of the transduction is for language modeling,
where the sequence of words x1:i is used to predict a distribution
over the (i+ 1)th word

• RNN based lanuage models are shown to provide vastly better
perplxities than traditional language models

• Using RNNs as transducers allows us to relax the Markov
assumption and condition on the entire prediction history

10



An illustration of transducer

11



Bidirectional RNNs (biRNN)

• A useful elaboration of an RNN is a biRNN

• Consider an input sequence x1:n. The biRNN works by
maintaining two separate states, sf

i and sb
i for each input position i

− The forward state sf
i is based on x1,x2, . . . ,xi

− The backward state sb
i is based on xn,xn−1, . . . ,xi

• The output at position i is based on the concatenation of the two
output vectors

yi =
[
yf

i ; yb
i

]
=
[
Of (sf

i );Ob(sb
i)
]

• Thus, we define biRNN as

biRNN(x1:n, i) = yi =
[
RNNf (x1:i),RNNb(xn:i)

]

12



An illustration of biRNN

13



Deep (multi-layer stacked) RNNs

• The input for the first RNN are x1:n, while the input of the jth RNN
(j ≥ 2) are the outputs of the RNN below it, yj−1

1:n

• While it is not theoretically clear what is the additional power
gained by the deeper architecture, it was observed empirically that
deep RNNs work better than shallower ones on some tasks

• The author’s experience: using two or more layers indeed often
improves over using a single one

14



A note on reading the literature

• Unfortunately, it is often the case that inferring the exact model
form from reading its description in a research paper can be quite
challenging

• For example,

− The inputs to the RNN can be either one-hot vectors or embedded
representations

− The input sequence can be padded with start-of-sequence and/or
end-of-sequence symbols, or not

15



An illustration of deep RNN

16



Simple RNN (SRNN)

• The nonlinear function g is usually tanh or ReLU

• The output function O(·) is the identify function

si = RSRNN(xi, si−1) = g (si−1Ws + xiWx + b)
yi = OSRNN(si) = si

si,yi ∈ Rds , xi ∈ Rdx , Wx ∈ Rdx×ds , Ws ∈ Rds×ds , b ∈ Rds

• SRNN is hard to train effectively because of the vanishing
gradients problem

17



Gated architectures

• An apparent problem with SRNN is that the memory access is not
controlled. At each step of the computation, the entire memory
state is read, and the entire memory state is written

• We denote the hadamard-product operation (element-wise
product) as �

• To control memory access, consider a binary vector g ∈ {0, 1}n

• For a memory s ∈ Rd and an input x ∈ Rd, the computation

s′ ←− g� x + (1− g)� s

“reads” the entries in x that correspond to the 1 values in g, and
writes them to the new memory s′. Locations that weren’t read to are
copied from the memory s to the new memory s′ through the use of
the gate (1− g)

18



An illustration of binary gate

19



Differentiable gates

• The gates should not be static, but be controlled by the current
memory state and the input, and their behavior should be learned

• Obstacle: learning in our framework entails being differentiable
(because of the backpropagation algorithm), but the binary 0-1
values used in th e gates are not differentiable

• Solution: approximate the hard gating mechanism with a soft, but
diffrentiable, gating mechanism

• To achieve these differentiable gates, we replace the requirement
that g ∈ {0, 1}n, and allow arbitrary real numbers g′ ∈ Rn. These
are then passed through a sigmoid function σ(g′), which take
values in the range (0, 1)

20



LSTM

• Long Short-Term Memory (LSTM): explicitly splits the state vector
si into two halves, where one half is treated as “memory cells” cj ,
and the hidden state component hj

sj = RLSTM(sj−1,xj) = [cj ; hj ]

• There are three gates, input, forget, and output

cj = f � cj−1 + i� z

z = tanh
(
xjWxz + hj−1Whz

)
hj = o� tanh(cj)
yj = OLSTM(sj) = hj

21



LSTM gates

• The gates are based on xj ,hj−1 and are passed through a
sigmoid activation function

i = σ
(
xjWxi + hj−1Whi

)
f = σ

(
xjWxf + hj−1Whf

)
o = σ

(
xjWxo + hj−1Who

)

• When training LSTM networks, it is strongly recommended to
always initialize the bias term of the forget gate to be close to one

22



GRU
• Gated Recurrent Unit (GRU) is shown to perform comparably to

the LSTM on several datasets

• GRU has substantially fewer gates that LSTM and doesn’t have a
separate memory component

sj = RGRU(sj−1,xj) = (1− z)� sj−1 + z� s̃j

s̃j = tanh (xjWxs + (r� sj−1)Wsg)
yj = OGRU(sj) = sj

• Gate r controls access to the previous state sj−1 in s̃j

• Gate z controls the proportions of the interpolation between sj−1
and s̃j when in the updated state sj

z = σ (xjWxz + sj−1Wsz)
r = σ (xjWxr + sj−1Wsr)

23



Acceptors

• The simplest use of RNN: read in an input sequence, and produce
a binary of multi-class answer at the end

• The power of RNN is often not needed for many natural language
classification tasks, because the word-order and sentence
structure turn out to not be very important in many cases, and
bag-of-words or bag-of-ngrams classifier often works just as well
or even better than RNN acceptors

24



Sentiment classification: sentence level

• The sentence level sentiment classification is straightforward to
model using an RNN acceptor:

− Tokenization
− RNN reads in the words of the sentence one at a time
− The final RNN state is then fed into a MLP followed by a

softmax-layer with two outputs
− The network is trained with cross-entropy loss based on the gold

sentiment labels

p(label = k | w1:n) = ŷ[k]

ŷ = softmax {MLP [RNN(x1:n)]}
x1:n = E[w1], . . . ,E[wn]

• biRNN: it is often helpful to extend the RNN model into the biRNN

ŷ = softmax
{

MLP
[
RNNf (x1:n); RNNb(xn:1)

]}
25



Hierarchical biRNN

• For longer sentences, it can be useful to use a hierarchical
architecture, in which the sentence is split into smaller spans
based on punctuation

• Suppose a sentence w1:n is split into m spans w1
1:`1

, . . . , wm
1:`m

,
then the architecture is

p(label = k | w1:n) = ŷ[k]

ŷ = softmax {MLP [RNN(z1:m)]}

zi =
[
RNNf (xi

1:`i
),RNNb(xi

`i:1)
]

xi
1:`i

= E[wi
1], . . . ,E[wi

`i
]

• Each of the m different spans may convey a different sentiment

• The higher-level acceptor reads the summary z1:m produced by
the lower level encoder, and decides on the overall sentiment

26



Document level sentiment classification

• Document level sentiment classification and harder than sentence
level classification

• A hierarchical architecture is useful:

− Each sentence si is encoded using a gated RNN, producing a
vector zi

− The vectors z1:n are then fed into a second gated RNN, producing
a vector h = RNN(z1:n)

− h is then used fro prediction ŷ = softmax(MLP(h))

• Keeping all intermediate vectors of the document-level RNN
produces slightly higher results in some cases

h1:n = RNN∗(z1:n)

ŷ = softmax

(
MLP

(
1
n

n∑
i=1

hi

))

27



References

• Goldberg, Yoav. (2017). Neural Network Methods for Natural
Language Processing, Morgan & Claypool

28


	
	Ch14 Recurrent Neural Networks: Modeling Sequences and Stacks
	The RNN Abstraction
	Common RNN usages
	Bidirectional RNNs and Deep RNNs

	Ch15 Concrete Recurrent Neural Network Architectures
	Simple RNN
	Gated Architectures: LSTM and GRU

	Ch16 Modeling with Recurrent Networks
	Sentiment Classification


