Notes: Pattern Recognition and Machine Learning – Ch10 Variational Inference

Yingbo Li

10/27/2020

Table of Contents

[Variational Inference](#page-2-0)

[Introduction of the variational inference method](#page-2-0)

[Example: univariate Gaussian](#page-11-0)

[Model selection](#page-15-0)

[Variational Mixture of Gaussians](#page-16-0)

[Variational Linear Regression](#page-28-0)

[Exponential Family Distributions](#page-32-0)

[Local Variational Methods](#page-32-0)

[Variational Logistic Regression](#page-32-0)

[Expectation Propagation](#page-32-0)

Definitions

- Variational inference is also called variational Bayes, thus
	- − all parameters are viewed as random variables, and
	- − they will have prior distributions.
- We denote the set of all latent variables and parameters by **Z**
	- $-$ Note: the parameter vector θ no long appears, because it's now a part of **Z**
- Goal: find approximation for
	- − posterior distribution *p*(**Z** | **X**), and
	- − marginal likelihood *p*(**X**), also called the model evidence

Model evidence equals lower bound plus KL divergence

- **Goal**: We want to find a distribution *q*(**Z**) that approximates the posterior distribution $p(\mathbf{Z} | \mathbf{X})$. In other word, we want to minimize the KL divergence $KL(q||p)$.
- Note the decomposition of the marginal likelihood

 $\log p(\mathbf{X}) = \mathcal{L}(q) + \mathsf{KL}(q||p),$

• Thus, maximizing the lower bound (also called ELBO) $\mathcal{L}(q)$ is equivalent to minimizing the KL divergence $KL(q||p)$.

$$
\mathcal{L}(q) = \int q(\mathbf{Z}) \log \left\{ \frac{p(\mathbf{X}, \mathbf{Z})}{q(\mathbf{Z})} \right\} d\mathbf{Z}
$$

$$
\text{KL}(q||p) = -\int q(\mathbf{Z}) \log \left\{ \frac{p(\mathbf{Z} \mid \mathbf{X})}{q(\mathbf{Z})} \right\} d\mathbf{Z}
$$

Mean field family

- **Goal**: restrict the family of distribution *q*(**Z**) so that they comprise only tractable distributions, while allow the family to be sufficiently flexible so that it can approximate the posterior distribution well
- Mean field family : partition the elements of **Z** into disjoint groups denoted by \mathbf{Z}_i , for $j = 1, \ldots, M$, and assume q factorizes wrt these groups:

$$
q(\mathbf{Z}) = \prod_{j=1}^{M} q_j(\mathbf{Z}_j)
$$

− Note: we place no resitriction on the functional forms of the individual factors $q_i(\mathbf{Z}_i)$

Solution for mean field families: derivation

- We will optimize wrt each $q_i(\mathbf{Z}_j)$ in turn.
- For *q^j* , the lower bound (to be maximized) can be decomposed as

$$
\mathcal{L}(q) = \int \prod_k q_k \left\{ \log p(\mathbf{X}, \mathbf{Z}) - \sum_k \log q_k \right\} d\mathbf{Z}
$$

=
$$
\int q_j \underbrace{\left\{ \int \log p(\mathbf{X}, \mathbf{Z}) \prod_{k \neq j} q_k d\mathbf{Z}_k \right\}}_{\mathbb{E}_{k \neq j} [\log p(\mathbf{X}, \mathbf{Z})]} d\mathbf{Z}_j - \int q_j \log q_j d\mathbf{Z}_j + \text{const}
$$

=
$$
-\text{KL}(q_j || \tilde{p}(\mathbf{X}, \mathbf{Z}_j)) + \text{const}
$$

− Here the new distribution *p*˜(**X***,* **Z***^j*) is defined as

$$
\log \tilde{p}(\mathbf{X}, \mathbf{Z}_j) = \mathbb{E}_{k \neq j} [\log p(\mathbf{X}, \mathbf{Z})] + \text{const}
$$

Solution for mean field families

• A general expression for the optimal solution $q_j^*(\mathbf{Z}_j)$ is

 $\log q_j^*(\mathbf{Z}_j) = \mathbb{E}_{k \neq j} [\log p(\mathbf{X}, \mathbf{Z})] + \text{const}$

- − We can only use this solution in an iterative manner, because the expectations should be computed wrt other factors $q_k(\mathbf{Z}_k)$ for $k \neq j$.
- − Convergence is guaranteed because bound is convex wrt each factor *q^j*
- − On the right hand side we only need to retain those terms that have some functional dependence on **Z***^j*

Example: approximate a bivariate Gaussian using two independent distributions

• Target distribution: a bivariate Gaussian

$$
p(\mathbf{z}) = \mathsf{N}\left(\mathbf{z} \mid \boldsymbol{\mu}, \boldsymbol{\Lambda}^{-1}\right), \quad \boldsymbol{\mu} = \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}, \quad \boldsymbol{\Lambda} = \begin{pmatrix} \lambda_{11} & \lambda_{12} \\ \lambda_{12} & \lambda_{22} \end{pmatrix}
$$

• We use a factorized form to approximate $p(\mathbf{z})$:

$$
q(\mathbf{z})=q_1(z_1)q_2(z_2)
$$

• Note: we do not assume any functional forms for q_1 and q_2

VI solution to the bivariate Gaussian problem

$$
\log q_1^*(z_1) = \mathbb{E}_{z_2} [\log p(\mathbf{z})] + \text{const}
$$

= $\mathbb{E}_{z_2} \left[-\frac{1}{2} (z_1 - \mu_1)^2 \Lambda_{11} - (z_1 - \mu_1) \Lambda_{12} (z_2 - \mu_2) \right] + \text{const}$
= $-\frac{1}{2} z_1^2 \Lambda_{11} + z_1 \mu_1 \Lambda_{11} - (z_1 - \mu_1) \Lambda_{12} (\mathbb{E}[z_2] - \mu_2) + \text{const}$

- Thus we identify a normal, with mean depending on $\mathbb{E}[z_2]$: $q^*(z_1) = \mathsf{N}\left(z_1 \mid m_1, \Lambda_{11}^{-1}\right), \quad m_1 = \mu_1 - \Lambda_{11}^{-1}\Lambda_{12} \left(\mathbb{E}[z_2] - \mu_2\right)$
- By symmetry, *q* ∗ (*z*2) is also normal; its mean depends on E[*z*1] $q^*(z_2) = \mathsf{N}\left(z_2 \mid m_2, \Lambda_{22}^{-1}\right)$, $m_2 = \mu_2 - \Lambda_{22}^{-1}\Lambda_{12} (\mathbb{E}[z_1] - \mu_1)$
- We treat the above variational solutions as re-estimation equations, and cycle through the variables in turn updating them until some convergence criterion is satisfied

Visualize VI solution to bivariate Gaussian

- Variational inference minimizes $KL(q||p)$: mean of the approximation is correct, but variance (along the orthogonal direction) is significantly under-estimated
- Expectation propagation minimizes $KL(p||q)$: solution equals marginal distributions

Figure 1: Left: variational inference. Right: expectation propagation

Another example to compare $KL(q||p)$ and $KL(p||q)$

- To approximate a mixture of two Gaussians *p* (blue contour)
- Use a single Gaussian *q* (red contour) to approximate *p*
	- − By minimizing KL(*p*k*q*): figure (a)
	- − By minimizing KL(*q*k*p*): figure (b) and (c) show two local minimum

- For multimodal distribution
	- − a variational solution will tend to find one of the modes,
	- − but an expectation propagation solution would lead to poor predictive distribution (because the average of the two good parameter values is typically itself not a good parameter value)

Example: univariate Gaussian

• Suppose the data $D = \{x_1, \ldots, x_N\}$ follows iid normal distribution

$$
x_i \sim \mathsf{N}\left(\mu, \tau^{-1}\right)
$$

• The prior distributions are

$$
\mu \mid \tau \sim \mathsf{N}\left(\mu_0, (\lambda_0 \tau)^{-1}\right)
$$

$$
\tau \sim \mathsf{Gam}(a_0, b_0)
$$

• Factorized variational approximation

$$
q(\mu,\tau)=q(\mu)q(\tau)
$$

Variational solution for *µ*

$$
\log q^*(\mu) = \mathbb{E}_{\tau} \left[\log p(D \mid \mu, \tau) + \log p(\mu \mid \tau) \right] + \text{const}
$$

$$
= -\frac{\mathbb{E}[\tau]}{2} \left\{ \lambda_0 (\mu - \mu_0)^2 + \sum_{i=1}^N (x_i - \mu)^2 \right\} + \text{const}
$$

Thus, the variational solution for μ is

$$
q(\mu) = \mathsf{N}\left(\mu \mid \mu_N, \lambda_N^{-1}\right)
$$

$$
\mu_N = \frac{\lambda_0 \mu_0 + N\bar{x}}{\lambda_0 + N}
$$

$$
\lambda_N = (\lambda_0 + N) \mathbb{E}[\tau]
$$

Variational solution for *τ*

$$
\log q^*(\tau) = \mathbb{E}_{\mu} \left[\log p(D \mid \mu, \tau) + \log p(\mu \mid \tau) + \log p(\tau) \right] + \text{const}
$$

$$
= (a_0 - 1) \log \tau - b_0 \tau + \frac{N}{2} \log \tau
$$

$$
- \frac{\tau}{2} \mathbb{E}_{\mu} \left[\lambda_0 (\mu - \mu_0)^2 + \sum_{i=1}^N (x_i - \mu)^2 \right] + \text{const}
$$

Thus, the variational solution for *τ* is

$$
q(\tau) = \text{Gam}(\tau \mid a_N, b_N)
$$

\n
$$
a_N = a_0 + \frac{N}{2}
$$

\n
$$
b_N = b_0 + \frac{1}{2} \mathbb{E}_{\mu} \left[\lambda_0 (\mu - \mu_0)^2 + \sum_{i=1}^N (x_i - \mu)^2 \right]
$$

Visualization of VI solution to univariate normal

Figure 10.4 Illustration of variational inference for the mean μ and precision τ of a univariate Gaussian distribution. Contours of the true posterior distribution $p(\mu, \tau|D)$ are shown in green. (a) Contours of the initial factorized approximation $q_{\mu}(\mu)q_{\tau}(\tau)$ are shown in blue. (b) After re-estimating the factor $q_{\mu}(\mu)$. (c) After re-estimating the factor $q_{\tau}(\tau)$. (d) Contours of the optimal factorized approximation, to which the iterative scheme converges, are shown in red.

Model selection (comparison) under variational inference

- In addition to making inference on the parameter **Z**, we may also want to compare a set of candidate models, denoted by index *m*
- We should consider the factorization

$$
q(\mathbf{Z},m) = q(\mathbf{Z} \mid m)q(m)
$$

to approximate the posterior $p(\mathbf{Z}, m \mid \mathbf{X})$

• We can maximize the information lower bound

$$
\mathcal{L}_m = \sum_{m} \sum_{\mathbf{Z}} q(\mathbf{Z} \mid m) q(m) \log \left\{ \frac{p(\mathbf{Z}, \mathbf{X}, m)}{q(\mathbf{Z} \mid m) q(m)} \right\}
$$

which is a lower bound of $\log p(X)$

• The maximized *q*(*m*) can be used for model selection

Mixture of Gaussians

- For each observation $\mathbf{x}_n \in \mathbb{R}^D$, we have a corresponding latent variable **z***n*, a 1-of-*K* binary group indicator vector
- Mixture of Gasussians joint likelihood, based on *N* observations

$$
p(\mathbf{Z} \mid \boldsymbol{\pi}) = \prod_{n=1}^{N} \prod_{k=1}^{K} \pi_k^{z_{nk}}
$$

$$
p(\mathbf{X} \mid \mathbf{Z}, \boldsymbol{\mu}, \boldsymbol{\Lambda}) = \prod_{n=1}^{N} \prod_{k=1}^{K} \mathsf{N} (\mathbf{x}_n \mid \boldsymbol{\mu}_k, \boldsymbol{\Lambda}_k^{-1})^{z_{nk}}
$$

Figure 2: Graph representation of mixture of Gaussians

Conjugate priors

• Dirichlet for *π*

$$
p(\boldsymbol{\pi}) = \textsf{Dir}(\boldsymbol{\pi} \mid \boldsymbol{\alpha}_0) \propto \prod_{k=1}^K \pi_k^{\alpha_{0k}-1}
$$

• Independent Gaussian-Wishart for *µ,* **Λ**

$$
p(\boldsymbol{\mu}, \boldsymbol{\Lambda}) = \prod_{k=1}^{K} p(\boldsymbol{\mu}_k | \boldsymbol{\Lambda}_k) p(\boldsymbol{\Lambda}_k)
$$

=
$$
\prod_{k=1}^{K} \mathsf{N} (\boldsymbol{\mu}_k | \mathbf{m}_0, (\beta_0 \boldsymbol{\Lambda}_k)^{-1}) \mathsf{W} (\boldsymbol{\Lambda}_k | \mathbf{W}_0, \nu_0)
$$

- Usually, the prior mean
$$
m_0 = 0
$$

Variational distribution

• Joint posterior

 $p(\mathbf{X}, \mathbf{Z}, \boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Lambda}) = p(\mathbf{X} | \mathbf{Z}, \boldsymbol{\mu}, \boldsymbol{\Lambda}) p(\mathbf{Z} | \boldsymbol{\pi}) p(\boldsymbol{\pi}) p(\boldsymbol{\mu} | \boldsymbol{\Lambda}) p(\boldsymbol{\Lambda})$

• Variational distribution factorizes between the latent variables and the parameters

$$
q(\mathbf{Z}, \boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Lambda}) = q(\mathbf{Z})q(\boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Lambda})
$$

$$
= q(\mathbf{Z})q(\boldsymbol{\pi}) \prod_{k=1}^{K} q(\boldsymbol{\mu}_k, \boldsymbol{\Lambda}_k)
$$

Variational solution for Z

• Optimized factor

$$
\log q^*(\mathbf{Z}) = \mathbb{E}_{\pi,\mu,\Lambda} [\log p(\mathbf{X}, \mathbf{Z}, \pi, \mu, \Lambda)]
$$

\n
$$
= \mathbb{E}_{\pi} [\log p(\mathbf{Z} \mid \pi)] + \mathbb{E}_{\mu,\Lambda} [\log p(\mathbf{X} \mid \mathbf{Z}, \mu, \Lambda)]
$$

\n
$$
= \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} \log \rho_{nk} + \text{const}
$$

\n
$$
\log \rho_{nk} = \mathbb{E} [\log \pi_k] + \frac{1}{2} \mathbb{E} [\log |\mathbf{\Lambda}_k|] - \frac{D}{2} \log(2\pi)
$$

\n
$$
- \frac{1}{2} \mathbb{E}_{\mu,\Lambda} [(\mathbf{x}_n - \mu_k)'\Lambda_k(\mathbf{x}_n - \mu_k)]
$$

• Thus, the factor *q* ∗ (**Z**) takes the same functional form as the prior $p(\mathbf{Z} \mid \boldsymbol{\pi})$

$$
q^*(\mathbf{Z}) = \prod_{n=1}^N \prod_{k=1}^K r_{nk}^{z_{nk}}, \quad r_n k = \frac{\rho_{nk}}{\sum_{j=1}^K \rho_{nj}}
$$

− By *q* ∗ (**Z**), the posterior mean (i.e., responsibility) E[*znk*] = *rnk*

Define three statistics wrt the responsibilities

• For each of group $k = 1, \ldots, K$, denote

$$
N_k = \sum_{n=1}^{N} r_{nk}
$$

$$
\bar{\mathbf{x}}_k = \frac{1}{N_k} \sum_{n=1}^{N} r_{nk} \mathbf{x}_n
$$

$$
\mathbf{S}_k = \frac{1}{N_k} \sum_{n=1}^{N} r_{nk} (\mathbf{x}_n - \bar{\mathbf{x}}_k) (\mathbf{x}_n - \bar{\mathbf{x}}_k)'
$$

Variational solution for *π*

• Optimized factor

$$
\log q^{\ast}(\boldsymbol{\pi}) = \log p(\boldsymbol{\pi}) + \mathbb{E}_{\mathbf{Z}} \left[p(\mathbf{Z} \mid \boldsymbol{\pi}) \right]
$$

$$
= (\alpha_0 - 1) \sum_{k=1}^{K} \log \pi_k + \sum_{k=1}^{K} \sum_{n=1}^{N} r_{nk} \log \pi_{nk} + \text{const}
$$

• Thus, *q* ∗ (*π*) is a Dirichlet distribution

$$
q^*(\boldsymbol{\pi}) = \text{Dir}(\boldsymbol{\alpha}), \quad \alpha_k = \alpha_0 + N_k
$$

$\boldsymbol{\mathsf{Variational} \;}$ solution for $\boldsymbol{\mu}_k, \boldsymbol{\Lambda}_k$

• Optimized factor for (μ_k, Λ_k)

$$
\log q^*(\boldsymbol{\mu}_k, \boldsymbol{\Lambda}_k) = \mathbb{E}_{\mathbf{Z}} \left[\sum_{n=1}^N z_{nk} \log \mathsf{N} \left(\mathbf{x}_n \mid \boldsymbol{\mu}_k, \boldsymbol{\Lambda}_k^{-1} \right) \right] + \log p(\boldsymbol{\mu}_k \mid \boldsymbol{\Lambda}_k) + \log p(\boldsymbol{\Lambda}_k)
$$

 \bullet Thus, $q^*(\boldsymbol{\mu}_k, \boldsymbol{\Lambda}_k)$ is Gaussian-Wishart

$$
q^*(\boldsymbol{\mu}_k | \boldsymbol{\Lambda}_k) = \mathsf{N}\left(\mathbf{m}_k, (\beta_k \boldsymbol{\Lambda}_k)^{-1}\right) q^*(\boldsymbol{\Lambda}_k) = \mathsf{W}(\boldsymbol{\Lambda}_k | \mathbf{W}_k, \nu_k)
$$

• Parameters are updated by the data

$$
\beta_k = \beta_0 + N_k, \quad \mathbf{m}_k = \frac{1}{\beta_k} (\beta_0 \mathbf{m}_0 + N_k \bar{\mathbf{x}}_k), \quad \nu_k = \nu_0 + N_k
$$

$$
\mathbf{W}_k^{-1} = \mathbf{W}_0^{-1} + N_k \mathbf{S}_k + \frac{\beta_0 N_k}{\beta_0 + N_k} (\bar{\mathbf{x}}_k - \mathbf{m}_0) (\bar{\mathbf{x}}_k - \mathbf{m}_0)'
$$

Similarity between VI and EM solutions

- Optimization of the variational posterior distribution involves cycling between two stages analogous to the E and M steps of the maximum likelihood EM algorithm
	- − Finding *q* ∗ (**Z**): analogous to the E step, both need to compute the responsibilities
	- − Finding *q* ∗ (*π, µ,* **Λ**): analogous to the M step
- The VI solution (Bayesian approach) has little computational overhead, comparing with the EM solution (maximum likelihood approach). The dominant computational cost for VI are
	- − Evaluation of the responsibilities
	- − Evaluation and inversion of the weighted data covariance matrices

Advantage of the VI solution over the EM solution:

- Since our priors are conjugate, the variational posterior distributions have the same functional form as the priors
- 1. No singularity arises in maximum likelihood when a Gassuain component "collapses" onto a specific data point
	- − This is actually the advantage of Bayesian solutions (with priors) over frequentist ones
- 2. No overfitting if we choose a large number *K*. This is helpful in determining the optimal number of components without performing cross validation
	- − For *α*⁰ *<* 1, the prior favors soutions where some of the mixing coefficients π are zero, thus can result in some less than K number components having nonzero mixing coefficients

Computing variational lower bound

- To test for convergence, it is useful to monitor the bound during the re-estimation.
- At each step of the iterative re-estimation, the value of the lower bound should not decrease

$$
\mathcal{L} = \sum_{\mathbf{Z}} \iiint q^*(\mathbf{Z}, \boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Lambda}) \log \left\{ \frac{p(\mathbf{X}, \mathbf{Z}, \boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Lambda})}{q^*(\mathbf{Z}, \boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Lambda})} \right\} d\boldsymbol{\pi} d\boldsymbol{\mu} d\boldsymbol{\Lambda}
$$
\n
$$
= \mathbb{E} \left[\log p(\mathbf{X}, \mathbf{Z}, \boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Lambda}) \right] - \mathbb{E} \left[\log q^*(\mathbf{Z}, \boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Lambda}) \right]
$$
\n
$$
= \mathbb{E} \left[\log p(\mathbf{X} \mid \mathbf{Z}, \boldsymbol{\mu}, \boldsymbol{\Lambda}) \right] + \mathbb{E} \left[\log p(\mathbf{Z} \mid \boldsymbol{\pi}) \right]
$$
\n
$$
+ \mathbb{E} \left[\log p(\boldsymbol{\pi}) \right] + \mathbb{E} \left[\log p(\boldsymbol{\mu}, \boldsymbol{\Lambda}) \right]
$$
\n
$$
- \mathbb{E} \left[\log q^*(\mathbf{Z}) \right] - \mathbb{E} \left[\log q^*(\boldsymbol{\pi}) \right] - \mathbb{E} \left[\log q^*(\boldsymbol{\mu}, \boldsymbol{\Lambda}) \right]
$$

Label switching problem

- EM solution of maximum likelihood does not have label switching problem, because the initialization will lead to just one of the solutions
- In a Bayesian setting, label switching problem can be an issue, because the marginal posterior is multi-modal.
- Recall that for multi-modal posteriors, variational inference usually approximate the distribution in the neighborhood of one of the modes and ignore the others

Induced factorizations

- Induced factorizations: the additional factorizations that are a consequence of the interaction between
	- − the assumed factorization, and
	- − the conditional independence properties of the true distribution
- For example, suppose we have three variation groups **A***,* **B***,* **C**
	- − We assume the following factorization

 $q(\mathbf{A}, \mathbf{B}, \mathbf{C}) = q(\mathbf{A}, \mathbf{B})q(\mathbf{C})$

− If **A** and **B** are conditional independent

 $\mathbf{A} \perp \mathbf{B} \mid \mathbf{X}, \mathbf{C} \Longleftrightarrow p(\mathbf{A}, \mathbf{B} \mid \mathbf{X}, \mathbf{C}) = p(\mathbf{A} \mid \mathbf{X}, \mathbf{C}) p(\mathbf{B} \mid \mathbf{X}, \mathbf{C})$

then we have induced factorization $q^*(\mathbf{A}, \mathbf{B}) = q^*(\mathbf{A})q^*(\mathbf{B})$

$$
\log q^*(\mathbf{A}, \mathbf{B}) = \mathbb{E}_{\mathbf{C}} [\log p(\mathbf{A}, \mathbf{B} \mid \mathbf{X}, \mathbf{C})] + \text{const}
$$

= $\mathbb{E}_{\mathbf{C}} [\log p(\mathbf{A} \mid \mathbf{X}, \mathbf{C})] + \mathbb{E}_{\mathbf{C}} [\log p(\mathbf{B} \mid \mathbf{X}, \mathbf{C})] + \text{const}$

Bayesian linear regression

- Here, I use a denotion system commonly used in statistics textbooks. So its different from the one used in this book.
- Likelihood function

$$
p(\mathbf{y} \mid \boldsymbol{\beta}) = \prod_{n=1}^{N} \mathsf{N}\left(y_n \mid \mathbf{x}_n \boldsymbol{\beta}, \phi^{-1}\right)
$$

 $-\phi = 1/\sigma^2$ is the precision parameter. We assume that it is known. $\beta \in \mathbb{R}^p$ includes the intercept

• Prior distributions: Normal Gamma

$$
p(\beta | \kappa) = \mathsf{N}\left(\beta | \mathbf{0}, \kappa^{-1}\mathbf{I}\right)
$$

$$
p(\kappa) = \text{Gam}(\kappa | a_0, b_0)
$$

Variational solution for *κ*

• Variational posterior factorization

$$
q(\boldsymbol{\beta}, \kappa) = q(\boldsymbol{\beta})q(\kappa)
$$

• Varitional solution for *κ*

$$
\log q^*(\kappa) = \log p(\kappa) + \mathbb{E}_{\beta} [\log p(\beta | \kappa)]
$$

= $(a_0 - 1) \log \kappa - b_0 \kappa + \frac{p}{2} \log \kappa - \frac{\kappa}{2} \mathbb{E} [\beta' \beta]$

• Varitional posterior is a Gamma

$$
\kappa \sim \text{Gam}\left(a_N, b_N\right)
$$

$$
a_N = a_0 + \frac{p}{2}
$$

$$
b_N = b_0 + \frac{\mathbb{E}\left[\beta'\beta\right]}{2}
$$

Variational solution for *β*

• Variational solution for *β*

$$
\log q^*(\beta) = \log p(\mathbf{y} | \beta) + \mathbb{E}_{\kappa} [\log p(\beta | \kappa)]
$$

= $-\frac{\phi}{2} (\mathbf{y} - \mathbf{X}\beta)^2 - \frac{\mathbb{E}[\kappa]}{2} \beta' \beta$
= $-\frac{1}{2} \beta' (\mathbb{E}[\kappa] \mathbf{I} + \phi \mathbf{X}' \mathbf{X}) \beta + \phi \beta' \mathbf{X}' \mathbf{y}$

• Variational posterior is a Normal

$$
\beta \sim \mathsf{N}(\mathbf{m}_{N}, \mathbf{S}_{N})
$$

$$
\mathbf{S}_{N} = \left(\mathbb{E}\left[\kappa\right]\mathbf{I} + \phi \mathbf{X}'\mathbf{X}\right)^{-1}
$$

$$
\mathbf{m}_{N} = \phi \mathbf{S}_{N} \mathbf{X}' \mathbf{y}
$$

Iteratively re-estimate the variational solutions

• Means of the variational posteriors

$$
\mathbb{E}[\kappa] = \frac{a_N}{b_N}
$$

$$
\mathbb{E}[\beta'\beta] = \mathbf{m}_N \mathbf{m}'_N + \mathbf{S}_N
$$

• Lower bound of $\log p(y)$ can be used in convergence monitoring, and also model selection

$$
\mathcal{L} = \mathbb{E} [\log p(\beta, \kappa, \mathbf{y})] - \mathbb{E} [\log q^*(\beta, \kappa)]
$$

= $\mathbb{E}_{\beta} [\log p(\mathbf{y} | \beta)] + \mathbb{E}_{\beta, \kappa} [\log p(\beta | \kappa)] + \mathbb{E}_{\kappa} [\log p(\kappa)]$
- $\mathbb{E}_{\beta} [\log q^*(\beta)] - \mathbb{E}_{\kappa} [\log q^*(\kappa)]$

References

• Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.