Notes: Pattern Recognition and Machine Learning – Ch10 Variational Inference

Yingbo Li

10/27/2020

Table of Contents

Variational Inference

Introduction of the variational inference method

Example: univariate Gaussian

Model selection

Variational Mixture of Gaussians

Variational Linear Regression

Exponential Family Distributions

Local Variational Methods

Variational Logistic Regression

Expectation Propagation

Definitions

- Variational inference is also called variational Bayes, thus
 - all parameters are viewed as random variables, and
 - they will have prior distributions.
- We denote the set of all latent variables and parameters by Z
 - Note: the parameter vector $\boldsymbol{\theta}$ no long appears, because it's now a part of \mathbf{Z}
- Goal: find approximation for
 - posterior distribution $p(\mathbf{Z} \mid \mathbf{X})$, and
 - marginal likelihood $p(\mathbf{X})$, also called the model evidence

Model evidence equals lower bound plus KL divergence

- **Goal**: We want to find a distribution $q(\mathbf{Z})$ that approximates the posterior distribution $p(\mathbf{Z} \mid \mathbf{X})$. In other word, we want to minimize the KL divergence KL(q||p).
- Note the decomposition of the marginal likelihood

 $\log p(\mathbf{X}) = \mathcal{L}(q) + \mathsf{KL}(q \| p),$

 Thus, maximizing the lower bound (also called ELBO) L(q) is equivalent to minimizing the KL divergence KL(q||p).

$$\mathcal{L}(q) = \int q(\mathbf{Z}) \log\left\{\frac{p(\mathbf{X}, \mathbf{Z})}{q(\mathbf{Z})}\right\} d\mathbf{Z}$$
$$\mathsf{KL}(q||p) = -\int q(\mathbf{Z}) \log\left\{\frac{p(\mathbf{Z} \mid \mathbf{X})}{q(\mathbf{Z})}\right\} d\mathbf{Z}$$

Mean field family

- Goal: restrict the family of distribution q(Z) so that they comprise only tractable distributions, while allow the family to be sufficiently flexible so that it can approximate the posterior distribution well
- Mean field family : partition the elements of Z into disjoint groups denoted by Z_j, for j = 1,..., M, and assume q factorizes wrt these groups:

$$q(\mathbf{Z}) = \prod_{j=1}^{M} q_j(\mathbf{Z}_j)$$

- Note: we place no resitriction on the functional forms of the individual factors $q_j(\mathbf{Z}_j)$

Solution for mean field families: derivation

- We will optimize wrt each $q_j(\mathbf{Z}_j)$ in turn.
- For q_j , the lower bound (to be maximized) can be decomposed as

$$\begin{split} \mathcal{L}(q) &= \int \prod_{k} q_{k} \left\{ \log p(\mathbf{X}, \mathbf{Z}) - \sum_{k} \log q_{k} \right\} d\mathbf{Z} \\ &= \int q_{j} \underbrace{\left\{ \int \log p(\mathbf{X}, \mathbf{Z}) \prod_{k \neq j} q_{k} d\mathbf{Z}_{k} \right\}}_{\mathbb{E}_{k \neq j} [\log p(\mathbf{X}, \mathbf{Z})]} d\mathbf{Z}_{j} - \int q_{j} \log q_{j} d\mathbf{Z}_{j} + \text{const} \\ &= -\mathsf{KL}\left(q_{j} \| \tilde{p}(\mathbf{X}, \mathbf{Z}_{j})\right) + \text{const} \end{split}$$

- Here the new distribution $\tilde{p}(\mathbf{X}, \mathbf{Z}_j)$ is defined as

 $\log \tilde{p}(\mathbf{X}, \mathbf{Z}_j) = \mathbb{E}_{k \neq j} \left[\log p(\mathbf{X}, \mathbf{Z}) \right] + \mathsf{const}$

Solution for mean field families

• A general expression for the optimal solution $q_j^*(\mathbf{Z}_j)$ is

 $\log q_i^*(\mathbf{Z}_j) = \mathbb{E}_{k \neq j} \left[\log p(\mathbf{X}, \mathbf{Z}) \right] + \text{const}$

- We can only use this solution in an iterative manner, because the expectations should be computed wrt other factors $q_k(\mathbf{Z}_k)$ for $k \neq j$.
- Convergence is guaranteed because bound is convex wrt each factor q_j
- On the right hand side we only need to retain those terms that have some functional dependence on Z_j

Example: approximate a bivariate Gaussian using two independent distributions

Target distribution: a bivariate Gaussian

$$p(\mathbf{z}) = \mathsf{N}\left(\mathbf{z} \mid \boldsymbol{\mu}, \boldsymbol{\Lambda}^{-1}\right), \quad \boldsymbol{\mu} = \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}, \quad \boldsymbol{\Lambda} = \begin{pmatrix} \lambda_{11} & \lambda_{12} \\ \lambda_{12} & \lambda_{22} \end{pmatrix}$$

• We use a factorized form to approximate $p(\mathbf{z})$:

$$q(\mathbf{z}) = q_1(z_1)q_2(z_2)$$

• Note: we do not assume any functional forms for q_1 and q_2

VI solution to the bivariate Gaussian problem

$$\log q_1^*(z_1) = \mathbb{E}_{z_2} \left[\log p(\mathbf{z}) \right] + \text{const}$$
$$= \mathbb{E}_{z_2} \left[-\frac{1}{2} (z_1 - \mu_1)^2 \Lambda_{11} - (z_1 - \mu_1) \Lambda_{12} (z_2 - \mu_2) \right] + \text{const}$$
$$= -\frac{1}{2} z_1^2 \Lambda_{11} + z_1 \mu_1 \Lambda_{11} - (z_1 - \mu_1) \Lambda_{12} (\mathbb{E}[z_2] - \mu_2) + \text{const}$$

- Thus we identify a normal, with mean depending on $\mathbb{E}[z_2]$: $q^*(z_1) = \mathsf{N}\left(z_1 \mid m_1, \Lambda_{11}^{-1}\right), \quad m_1 = \mu_1 - \Lambda_{11}^{-1}\Lambda_{12}\left(\mathbb{E}[z_2] - \mu_2\right)$
- By symmetry, $q^*(z_2)$ is also normal; its mean depends on $\mathbb{E}[z_1]$ $q^*(z_2) = \mathsf{N}\left(z_2 \mid m_2, \Lambda_{22}^{-1}\right), \quad m_2 = \mu_2 - \Lambda_{22}^{-1}\Lambda_{12}\left(\mathbb{E}[z_1] - \mu_1\right)$
- We treat the above variational solutions as re-estimation equations, and cycle through the variables in turn updating them until some convergence criterion is satisfied

Visualize VI solution to bivariate Gaussian

- Variational inference minimizes KL(*q*||*p*): mean of the approximation is correct, but variance (along the orthogonal direction) is significantly under-estimated
- Expectation propagation minimizes KL(p||q): solution equals marginal distributions

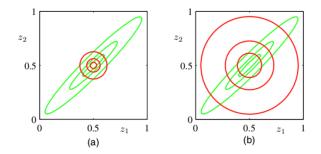
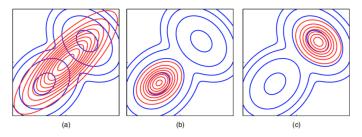


Figure 1: Left: variational inference. Right: expectation propagation

Another example to compare KL(q||p) and KL(p||q)

- To approximate a mixture of two Gaussians *p* (blue contour)
- Use a single Gaussian q (red contour) to approximate p
 - By minimizing KL(p||q): figure (a)
 - $-\,$ By minimizing KL($q\|p)$: figure (b) and (c) show two local minimum



- For multimodal distribution
 - a variational solution will tend to find one of the modes,
 - but an expectation propagation solution would lead to poor predictive distribution (because the average of the two good parameter values is typically itself not a good parameter value)

Example: univariate Gaussian

• Suppose the data $D = \{x_1, \dots, x_N\}$ follows iid normal distribution

$$x_i \sim \mathsf{N}\left(\mu, \tau^{-1}\right)$$

• The prior distributions are

$$\mu \mid \tau \sim \mathsf{N}\left(\mu_0, (\lambda_0 \tau)^{-1}\right)$$
$$\tau \sim \mathsf{Gam}(a_0, b_0)$$

• Factorized variational approximation

$$q(\mu,\tau)=q(\mu)q(\tau)$$

Variational solution for μ

$$\log q^{*}(\mu) = \mathbb{E}_{\tau} \left[\log p(D \mid \mu, \tau) + \log p(\mu \mid \tau) \right] + \text{const}$$
$$= -\frac{\mathbb{E}[\tau]}{2} \left\{ \lambda_{0}(\mu - \mu_{0})^{2} + \sum_{i=1}^{N} (x_{i} - \mu)^{2} \right\} + \text{const}$$

Thus, the variational solution for μ is

$$q(\mu) = \mathsf{N}\left(\mu \mid \mu_N, \lambda_N^{-1}\right)$$
$$\mu_N = \frac{\lambda_0 \mu_0 + N\bar{x}}{\lambda_0 + N}$$
$$\lambda_N = (\lambda_0 + N) \mathbb{E}[\tau]$$

Variational solution for τ

$$\log q^{*}(\tau) = \mathbb{E}_{\mu} \left[\log p(D \mid \mu, \tau) + \log p(\mu \mid \tau) + \log p(\tau) \right] + \text{const}$$
$$= (a_{0} - 1) \log \tau - b_{0}\tau + \frac{N}{2} \log \tau$$
$$- \frac{\tau}{2} \mathbb{E}_{\mu} \left[\lambda_{0}(\mu - \mu_{0})^{2} + \sum_{i=1}^{N} (x_{i} - \mu)^{2} \right] + \text{const}$$

Thus, the variational solution for τ is

$$q(\tau) = \text{Gam} (\tau \mid a_N, b_N)$$

$$a_N = a_0 + \frac{N}{2}$$

$$b_N = b_0 + \frac{1}{2} \mathbb{E}_{\mu} \left[\lambda_0 (\mu - \mu_0)^2 + \sum_{i=1}^N (x_i - \mu)^2 \right]$$

Visualization of VI solution to univariate normal

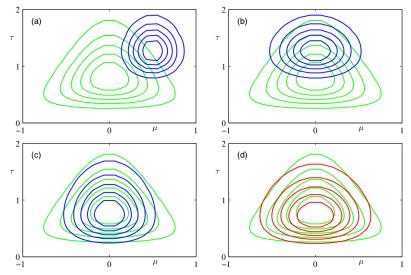


Figure 10.4 Illustration of variational inference for the mean μ and precision τ of a univariate Gaussian distribution. Contours of the true posterior distribution $p(\mu, \tau | D)$ are shown in green. (a) Contours of the initial factorized approximation $q_{\mu}(\mu)q_{\tau}(\tau)$ are shown in blue. (b) After re-estimating the factor $q_{\mu}(\mu)$. (c) After re-estimating the factor $q_{\tau}(\tau)$. (d) Contours of the optimal factorized approximation, to which the iterative scheme converges, are shown in red.

Model selection (comparison) under variational inference

- In addition to making inference on the parameter Z, we may also want to compare a set of candidate models, denoted by index m
- We should consider the factorization

$$q(\mathbf{Z},m) = q(\mathbf{Z} \mid m)q(m)$$

to approximate the posterior $p(\mathbf{Z}, m \mid \mathbf{X})$

• We can maximize the information lower bound

$$\mathcal{L}_m = \sum_m \sum_{\mathbf{Z}} q(\mathbf{Z} \mid m) q(m) \log \left\{ \frac{p(\mathbf{Z}, \mathbf{X}, m)}{q(\mathbf{Z} \mid m) q(m)} \right\}$$

which is a lower bound of $\log p(\mathbf{X})$

• The maximized q(m) can be used for model selection

Mixture of Gaussians

- For each observation $\mathbf{x}_n \in \mathbb{R}^D$, we have a corresponding latent variable \mathbf{z}_n , a 1-of-*K* binary group indicator vector
- Mixture of Gasussians joint likelihood, based on N observations

$$p(\mathbf{Z} \mid \boldsymbol{\pi}) = \prod_{n=1}^{N} \prod_{k=1}^{K} \pi_{k}^{z_{nk}}$$
$$p(\mathbf{X} \mid \mathbf{Z}, \boldsymbol{\mu}, \boldsymbol{\Lambda}) = \prod_{n=1}^{N} \prod_{k=1}^{K} \mathsf{N} \left(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Lambda}_{k}^{-1} \right)^{z_{nk}}$$

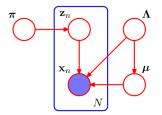


Figure 2: Graph representation of mixture of Gaussians

Conjugate priors

• Dirichlet for π

$$p(\boldsymbol{\pi}) = \mathsf{Dir}(\boldsymbol{\pi} \mid \boldsymbol{lpha}_0) \propto \prod_{k=1}^K \pi_k^{\alpha_{0k}-1}$$

• Independent Gaussian-Wishart for μ,Λ

$$p(\boldsymbol{\mu}, \boldsymbol{\Lambda}) = \prod_{k=1}^{K} p(\boldsymbol{\mu}_{k} \mid \boldsymbol{\Lambda}_{k}) p(\boldsymbol{\Lambda}_{k})$$
$$= \prod_{k=1}^{K} \mathsf{N}\left(\boldsymbol{\mu}_{k} \mid \mathbf{m}_{0}, (\beta_{0}\boldsymbol{\Lambda}_{k})^{-1}\right) \mathsf{W}\left(\boldsymbol{\Lambda}_{k} \mid \mathbf{W}_{0}, \nu_{0}\right)$$

$$-$$
 Usually, the prior mean $\mathbf{m}_0 = \mathbf{0}$

Variational distribution

Joint posterior

 $p(\mathbf{X}, \mathbf{Z}, \boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Lambda}) = p(\mathbf{X} \mid \mathbf{Z}, \boldsymbol{\mu}, \boldsymbol{\Lambda}) p(\mathbf{Z} \mid \boldsymbol{\pi}) p(\boldsymbol{\pi}) p(\boldsymbol{\mu} \mid \boldsymbol{\Lambda}) p(\boldsymbol{\Lambda})$

• Variational distribution factorizes between the latent variables and the parameters

$$egin{aligned} q(\mathbf{Z}, oldsymbol{\pi}, oldsymbol{\mu}, oldsymbol{\Lambda}) &= q(\mathbf{Z})q(oldsymbol{\pi}) \prod_{k=1}^{K} q(oldsymbol{\mu}_k, oldsymbol{\Lambda}_k) \end{aligned}$$

Variational solution for $\ensuremath{\mathrm{Z}}$

Optimized factor

$$\log q^{*}(\mathbf{Z}) = \mathbb{E}_{\pi,\mu,\Lambda} \left[\log p(\mathbf{X}, \mathbf{Z}, \pi, \mu, \Lambda) \right]$$
$$= \mathbb{E}_{\pi} \left[\log p(\mathbf{Z} \mid \pi) \right] + \mathbb{E}_{\mu,\Lambda} \left[\log p(\mathbf{X} \mid \mathbf{Z}, \mu, \Lambda) \right]$$
$$= \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} \log \rho_{nk} + \text{const}$$
$$\log \rho_{nk} = \mathbb{E} \left[\log \pi_{k} \right] + \frac{1}{2} \mathbb{E} \left[\log |\Lambda_{k}| \right] - \frac{D}{2} \log(2\pi)$$
$$- \frac{1}{2} \mathbb{E}_{\mu,\Lambda} \left[(\mathbf{x}_{n} - \mu_{k})' \Lambda_{k} (\mathbf{x}_{n} - \mu_{k}) \right]$$

- Thus, the factor $q^*({\bf Z})$ takes the same functional form as the prior $p({\bf Z} \mid {\bf \pi})$

$$q^*(\mathbf{Z}) = \prod_{n=1}^{N} \prod_{k=1}^{K} r_{nk}^{z_{nk}}, \quad r_n k = \frac{\rho_{nk}}{\sum_{j=1}^{K} \rho_{nj}}$$

- By $q^*(\mathbf{Z})$, the posterior mean (i.e., responsibility) $\mathbb{E}[z_{nk}] = r_{nk}$

Define three statistics wrt the responsibilities

• For each of group $k = 1, \ldots, K$, denote

$$N_{k} = \sum_{n=1}^{N} r_{nk}$$
$$\bar{\mathbf{x}}_{k} = \frac{1}{N_{k}} \sum_{n=1}^{N} r_{nk} \mathbf{x}_{n}$$
$$\mathbf{S}_{k} = \frac{1}{N_{k}} \sum_{n=1}^{N} r_{nk} \left(\mathbf{x}_{n} - \bar{\mathbf{x}}_{k}\right) \left(\mathbf{x}_{n} - \bar{\mathbf{x}}_{k}\right)'$$

Variational solution for π

• Optimized factor

$$\log q^*(\boldsymbol{\pi}) = \log p(\boldsymbol{\pi}) + \mathbb{E}_{\mathbf{Z}} \left[p(\mathbf{Z} \mid \boldsymbol{\pi}) \right]$$
$$= (\alpha_0 - 1) \sum_{k=1}^K \log \pi_k + \sum_{k=1}^K \sum_{n=1}^N r_{nk} \log \pi_{nk} + \text{const}$$

• Thus, $q^*(\boldsymbol{\pi})$ is a Dirichlet distribution

$$q^*(\boldsymbol{\pi}) = \mathsf{Dir}(\boldsymbol{\alpha}), \quad \alpha_k = \alpha_0 + N_k$$

Variational solution for μ_k, Λ_k

• Optimized factor for (μ_k, Λ_k)

$$\log q^*(\boldsymbol{\mu}_k, \boldsymbol{\Lambda}_k) = \mathbb{E}_{\mathbf{Z}} \left[\sum_{n=1}^N z_{nk} \log \mathsf{N}\left(\mathbf{x}_n \mid \boldsymbol{\mu}_k, \boldsymbol{\Lambda}_k^{-1}\right) \right] + \log p(\boldsymbol{\mu}_k \mid \boldsymbol{\Lambda}_k) + \log p(\boldsymbol{\Lambda}_k)$$

• Thus, $q^*({oldsymbol \mu}_k, {oldsymbol \Lambda}_k)$ is Gaussian-Wishart

$$q^*(\boldsymbol{\mu}_k \mid \boldsymbol{\Lambda}_k) = \mathsf{N}\left(\mathbf{m}_k, (\beta_k \boldsymbol{\Lambda}_k)^{-1}\right) q^*(\boldsymbol{\Lambda}_k) \quad = \mathsf{W}(\boldsymbol{\Lambda}_k \mid \mathbf{W}_k, \nu_k)$$

• Parameters are updated by the data

$$\beta_{k} = \beta_{0} + N_{k}, \quad \mathbf{m}_{k} = \frac{1}{\beta_{k}} \left(\beta_{0}\mathbf{m}_{0} + N_{k}\bar{\mathbf{x}}_{k}\right), \quad \nu_{k} = \nu_{0} + N_{k}$$
$$\mathbf{W}_{k}^{-1} = \mathbf{W}_{0}^{-1} + N_{k}\mathbf{S}_{k} + \frac{\beta_{0}N_{k}}{\beta_{0} + N_{k}} \left(\bar{\mathbf{x}}_{k} - \mathbf{m}_{0}\right) \left(\bar{\mathbf{x}}_{k} - \mathbf{m}_{0}\right)'$$

Similarity between VI and EM solutions

- Optimization of the variational posterior distribution involves cycling between two stages analogous to the E and M steps of the maximum likelihood EM algorithm
 - Finding $q^*(\mathbf{Z})$: analogous to the E step, both need to compute the responsibilities
 - Finding $q^*(\boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Lambda})$: analogous to the M step
- The VI solution (Bayesian approach) has little computational overhead, comparing with the EM solution (maximum likelihood approach). The dominant computational cost for VI are
 - Evaluation of the responsibilities
 - Evaluation and inversion of the weighted data covariance matrices

Advantage of the VI solution over the EM solution:

- Since our priors are conjugate, the variational posterior distributions have the same functional form as the priors
- 1. No singularity arises in maximum likelihood when a Gassuain component "collapses" onto a specific data point
 - This is actually the advantage of Bayesian solutions (with priors) over frequentist ones
- 2. No overfitting if we choose a large number *K*. This is helpful in determining the optimal number of components without performing cross validation
 - For $\alpha_0 < 1$, the prior favors soutions where some of the mixing coefficients π are zero, thus can result in some less than *K* number components having nonzero mixing coefficients

Computing variational lower bound

- To test for convergence, it is useful to monitor the bound during the re-estimation.
- At each step of the iterative re-estimation, the value of the lower bound should not decrease

$$\begin{aligned} \mathcal{L} &= \sum_{\mathbf{Z}} \iiint q^*(\mathbf{Z}, \boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Lambda}) \log \left\{ \frac{p(\mathbf{X}, \mathbf{Z}, \boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Lambda})}{q^*(\mathbf{Z}, \boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Lambda})} \right\} d\boldsymbol{\pi} d\boldsymbol{\mu} d\boldsymbol{\Lambda} \\ &= \mathbb{E} \left[\log p(\mathbf{X}, \mathbf{Z}, \boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Lambda}) \right] - \mathbb{E} \left[\log q^*(\mathbf{Z}, \boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Lambda}) \right] \\ &= \mathbb{E} \left[\log p(\mathbf{X} \mid \mathbf{Z}, \boldsymbol{\mu}, \boldsymbol{\Lambda}) \right] + \mathbb{E} \left[\log p(\mathbf{Z} \mid \boldsymbol{\pi}) \right] \\ &+ \mathbb{E} \left[\log p(\boldsymbol{\pi}) \right] + \mathbb{E} \left[\log p(\boldsymbol{\mu}, \boldsymbol{\Lambda}) \right] \\ &- \mathbb{E} \left[\log q^*(\mathbf{Z}) \right] - \mathbb{E} \left[\log q^*(\boldsymbol{\pi}) \right] - \mathbb{E} \left[\log q^*(\boldsymbol{\mu}, \boldsymbol{\Lambda}) \right] \end{aligned}$$

Label switching problem

- EM solution of maximum likelihood does not have label switching problem, because the initialization will lead to just one of the solutions
- In a Bayesian setting, label switching problem can be an issue, because the marginal posterior is multi-modal.
- Recall that for multi-modal posteriors, variational inference usually approximate the distribution in the neighborhood of one of the modes and ignore the others

Induced factorizations

- Induced factorizations: the additional factorizations that are a consequence of the interaction between
 - the assumed factorization, and
 - the conditional independence properties of the true distribution
- For example, suppose we have three variation groups A, B, C
 - We assume the following factorization

 $q(\mathbf{A}, \mathbf{B}, \mathbf{C}) = q(\mathbf{A}, \mathbf{B})q(\mathbf{C})$

- If A and B are conditional independent

 $\mathbf{A} \perp \mathbf{B} \mid \mathbf{X}, \mathbf{C} \Longleftrightarrow p(\mathbf{A}, \mathbf{B} \mid \mathbf{X}, \mathbf{C}) = p(\mathbf{A} \mid \mathbf{X}, \mathbf{C})p(\mathbf{B} \mid \mathbf{X}, \mathbf{C})$

then we have induced factorization $q^*(\mathbf{A}, \mathbf{B}) = q^*(\mathbf{A})q^*(\mathbf{B})$

$$\log q^*(\mathbf{A}, \mathbf{B}) = \mathbb{E}_{\mathbf{C}} \left[\log p(\mathbf{A}, \mathbf{B} \mid \mathbf{X}, \mathbf{C}) \right] + \mathsf{const}$$
$$= \mathbb{E}_{\mathbf{C}} \left[\log p(\mathbf{A} \mid \mathbf{X}, \mathbf{C}) \right] + \mathbb{E}_{\mathbf{C}} \left[\log p(\mathbf{B} \mid \mathbf{X}, \mathbf{C}) \right] + \mathsf{const}$$

Bayesian linear regression

- Here, I use a denotion system commonly used in statistics textbooks. So its different from the one used in this book.
- Likelihood function

$$p(\mathbf{y} \mid \boldsymbol{\beta}) = \prod_{n=1}^{N} \mathsf{N}\left(y_n \mid \mathbf{x}_n \boldsymbol{\beta}, \phi^{-1}\right)$$

 $-\phi = 1/\sigma^2$ is the precision parameter. We assume that it is known. $-\beta \in \mathbb{R}^p$ includes the intercept

Prior distributions: Normal Gamma

$$p(\boldsymbol{\beta} \mid \boldsymbol{\kappa}) = \mathsf{N}\left(\boldsymbol{\beta} \mid \mathbf{0}, \boldsymbol{\kappa}^{-1}\mathbf{I}\right)$$
$$p(\boldsymbol{\kappa}) = \mathsf{Gam}(\boldsymbol{\kappa} \mid a_0, b_0)$$

Variational solution for κ

• Variational posterior factorization

$$q(\boldsymbol{\beta},\kappa) = q(\boldsymbol{\beta})q(\kappa)$$

• Varitional solution for κ

$$\log q^*(\kappa) = \log p(\kappa) + \mathbb{E}_{\beta} \left[\log p(\beta \mid \kappa)\right]$$
$$= (a_0 - 1) \log \kappa - b_0 \kappa + \frac{p}{2} \log \kappa - \frac{\kappa}{2} \mathbb{E} \left[\beta'\beta\right]$$

• Varitional posterior is a Gamma

$$\kappa \sim \operatorname{Gam} (a_N, b_N)$$
$$a_N = a_0 + \frac{p}{2}$$
$$b_N = b_0 + \frac{\mathbb{E} \left[\beta' \beta \right]}{2}$$

Variational solution for β

• Variational solution for β

$$\log q^{*}(\boldsymbol{\beta}) = \log p(\mathbf{y} \mid \boldsymbol{\beta}) + \mathbb{E}_{\kappa} \left[\log p(\boldsymbol{\beta} \mid \boldsymbol{\kappa})\right]$$
$$= -\frac{\phi}{2} (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^{2} - \frac{\mathbb{E} \left[\boldsymbol{\kappa}\right]}{2} \boldsymbol{\beta}' \boldsymbol{\beta}$$
$$= -\frac{1}{2} \boldsymbol{\beta}' \left(\mathbb{E} \left[\boldsymbol{\kappa}\right] \mathbf{I} + \boldsymbol{\phi} \mathbf{X}' \mathbf{X}\right) \boldsymbol{\beta} + \boldsymbol{\phi} \boldsymbol{\beta}' \mathbf{X}' \mathbf{y}$$

• Variational posterior is a Normal

$$\beta \sim \mathsf{N}(\mathbf{m}_N, \mathbf{S}_N)$$
$$\mathbf{S}_N = \left(\mathbb{E}\left[\kappa\right] \mathbf{I} + \phi \mathbf{X}' \mathbf{X}\right)^{-1}$$
$$\mathbf{m}_N = \phi \mathbf{S}_N \mathbf{X}' \mathbf{y}$$

Iteratively re-estimate the variational solutions

· Means of the variational posteriors

$$\mathbb{E}[\kappa] = rac{a_N}{b_N} \ \mathbb{E}[m{eta}'m{eta}] = \mathbf{m}_N \mathbf{m}'_N + \mathbf{S}_N$$

- Lower bound of $\log p(\mathbf{y})$ can be used in convergence monitoring, and also model selection

$$\mathcal{L} = \mathbb{E} \left[\log p(\boldsymbol{\beta}, \kappa, \mathbf{y}) \right] - \mathbb{E} \left[\log q^*(\boldsymbol{\beta}, \kappa) \right]$$

= $\mathbb{E}_{\boldsymbol{\beta}} \left[\log p(\mathbf{y} \mid \boldsymbol{\beta}) \right] + \mathbb{E}_{\boldsymbol{\beta}, \kappa} \left[\log p(\boldsymbol{\beta} \mid \kappa) \right] + \mathbb{E}_{\kappa} \left[\log p(\kappa) \right]$
- $\mathbb{E}_{\boldsymbol{\beta}} \left[\log q^*(\boldsymbol{\beta}) \right] - \mathbb{E}_{\kappa} \left[\log q^*(\kappa) \right]$

References

• Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.