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Definitions

• Variational inference is also called variational Bayes, thus
− all parameters are viewed as random variables, and
− they will have prior distributions.

• We denote the set of all latent variables and parameters by Z
− Note: the parameter vector θ no long appears, because it’s now a

part of Z
• Goal: find approximation for
− posterior distribution p(Z | X), and
− marginal likelihood p(X), also called the model evidence
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Model evidence equals lower bound plus KL divergence

• Goal: We want to find a distribution q(Z) that approximates the
posterior distribution p(Z | X). In other word, we want to minimize
the KL divergence KL(q‖p).

• Note the decomposition of the marginal likelihood

log p(X) = L(q) + KL(q‖p),

• Thus, maximizing the lower bound (also called ELBO) L(q) is
equivalent to minimizing the KL divergence KL(q‖p).

L(q) =
∫
q(Z) log

{
p(X,Z)
q(Z)

}
dZ

KL(q‖p) = −
∫
q(Z) log

{
p(Z | X)
q(Z)

}
dZ
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Mean field family

• Goal: restrict the family of distribution q(Z) so that they comprise
only tractable distributions, while allow the family to be sufficiently
flexible so that it can approximate the posterior distribution well

• Mean field family : partition the elements of Z into disjoint groups
denoted by Zj , for j = 1, . . . ,M , and assume q factorizes wrt
these groups:

q(Z) =
M∏
j=1

qj(Zj)

− Note: we place no resitriction on the functional forms of the
individual factors qj(Zj)
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Solution for mean field families: derivation

• We will optimize wrt each qj(Zj) in turn.

• For qj , the lower bound (to be maximized) can be decomposed as

L(q) =
∫ ∏

k

qk

{
log p(X,Z)−

∑
k

log qk

}
dZ

=
∫
qj


∫

log p(X,Z)
∏
k 6=j

qkdZk

︸ ︷︷ ︸
Ek 6=j [log p(X,Z)]

dZj −
∫
qj log qjdZj + const

= −KL (qj‖p̃(X,Zj)) + const

− Here the new distribution p̃(X,Zj) is defined as

log p̃(X,Zj) = Ek 6=j [log p(X,Z)] + const
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Solution for mean field families

• A general expression for the optimal solution q∗j (Zj) is

log q∗j (Zj) = Ek 6=j [log p(X,Z)] + const

− We can only use this solution in an iterative manner, because the
expectations should be computed wrt other factors qk(Zk) for k 6= j.

− Convergence is guaranteed because bound is convex wrt each
factor qj

− On the right hand side we only need to retain those terms that have
some functional dependence on Zj
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Example: approximate a bivariate Gaussian using two
independent distributions

• Target distribution: a bivariate Gaussian

p(z) = N
(
z | µ,Λ−1

)
, µ =

(
µ1
µ2

)
, Λ =

(
λ11 λ12
λ12 λ22

)

• We use a factorized form to approximate p(z):

q(z) = q1(z1)q2(z2)

• Note: we do not assume any functional forms for q1 and q2
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VI solution to the bivariate Gaussian problem

log q∗1(z1) = Ez2 [log p(z)] + const

= Ez2

[
−1

2(z1 − µ1)2Λ11 − (z1 − µ1)Λ12(z2 − µ2)
]

+ const

= −1
2z

2
1Λ11 + z1µ1Λ11 − (z1 − µ1)Λ12 (E[z2]− µ2) + const

• Thus we identify a normal, with mean depending on E[z2]:

q∗(z1) = N
(
z1 | m1,Λ−1

11

)
, m1 = µ1 − Λ−1

11 Λ12 (E[z2]− µ2)

• By symmetry, q∗(z2) is also normal; its mean depends on E[z1]

q∗(z2) = N
(
z2 | m2,Λ−1

22

)
, m2 = µ2 − Λ−1

22 Λ12 (E[z1]− µ1)

• We treat the above variational solutions as re-estimation
equations, and cycle through the variables in turn updating them
until some convergence criterion is satisfied
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Visualize VI solution to bivariate Gaussian

• Variational inference minimizes KL(q‖p): mean of the
approximation is correct, but variance (along the orthogonal
direction) is significantly under-estimated

• Expectation propagation minimizes KL(p‖q): solution equals
marginal distributions

Figure 1: Left: variational inference. Right: expectation propagation

10



Another example to compare KL(q‖p) and KL(p‖q)

• To approximate a mixture of two Gaussians p (blue contour)
• Use a single Gaussian q (red contour) to approximate p
− By minimizing KL(p‖q): figure (a)
− By minimizing KL(q‖p): figure (b) and (c) show two local minimum

• For multimodal distribution
− a variational solution will tend to find one of the modes,
− but an expectation propagation solution would lead to poor

predictive distribution (because the average of the two good
parameter values is typically itself not a good parameter value)
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Example: univariate Gaussian

• Suppose the data D = {x1, . . . , xN} follows iid normal distribution

xi ∼ N
(
µ, τ−1

)
• The prior distributions are

µ | τ ∼ N
(
µ0, (λ0τ)−1

)
τ ∼ Gam(a0, b0)

• Factorized variational approximation

q(µ, τ) = q(µ)q(τ)
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Variational solution for µ

log q∗(µ) = Eτ [log p(D | µ, τ) + log p(µ | τ)] + const

= −E[τ ]
2

{
λ0(µ− µ0)2 +

N∑
i=1

(xi − µ)2
}

+ const

Thus, the variational solution for µ is

q(µ) = N
(
µ | µN , λ−1

N

)
µN = λ0µ0 +Nx̄

λ0 +N

λN = (λ0 +N)E[τ ]

13



Variational solution for τ

log q∗(τ) = Eµ [log p(D | µ, τ) + log p(µ | τ) + log p(τ)] + const

= (a0 − 1) log τ − b0τ + N

2 log τ

− τ

2Eµ

[
λ0(µ− µ0)2 +

N∑
i=1

(xi − µ)2
]

+ const

Thus, the variational solution for τ is

q(τ) = Gam (τ | aN , bN )

aN = a0 + +N

2

bN = b0 + 1
2Eµ

[
λ0(µ− µ0)2 +

N∑
i=1

(xi − µ)2
]
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Visualization of VI solution to univariate normal
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Model selection (comparison) under variational inference

• In addition to making inference on the parameter Z, we may also
want to compare a set of candidate models, denoted by index m

• We should consider the factorization

q(Z,m) = q(Z | m)q(m)

to approximate the posterior p(Z,m | X)

• We can maximize the information lower bound

Lm =
∑
m

∑
Z
q(Z | m)q(m) log

{
p(Z,X,m)
q(Z | m)q(m)

}

which is a lower bound of log p(X)

• The maximized q(m) can be used for model selection
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Mixture of Gaussians
• For each observation xn ∈ RD, we have a corresponding latent

variable zn, a 1-of-K binary group indicator vector

• Mixture of Gasussians joint likelihood, based on N observations

p(Z | π) =
N∏
n=1

K∏
k=1

πznk
k

p(X | Z,µ,Λ) =
N∏
n=1

K∏
k=1

N
(
xn | µk,Λ−1

k

)znk

Figure 2: Graph representation of mixture of Gaussians
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Conjugate priors

• Dirichlet for π

p(π) = Dir(π | α0) ∝
K∏
k=1

πα0k−1
k

• Independent Gaussian-Wishart for µ,Λ

p(µ,Λ) =
K∏
k=1

p(µk | Λk)p(Λk)

=
K∏
k=1

N
(
µk |m0, (β0Λk)−1

)
W (Λk |W0, ν0)

− Usually, the prior mean m0 = 0
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Variational distribution

• Joint posterior

p(X,Z,π,µ,Λ) = p(X | Z,µ,Λ)p(Z | π)p(π)p(µ | Λ)p(Λ)

• Variational distribution factorizes between the latent variables and
the parameters

q(Z,π,µ,Λ) = q(Z)q(π,µ,Λ)

= q(Z)q(π)
K∏
k=1

q(µk,Λk)
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Variational solution for Z
• Optimized factor

log q∗(Z) = Eπ,µ,Λ [log p(X,Z,π,µ,Λ)]
= Eπ [log p(Z | π)] + Eµ,Λ [log p(X | Z,µ,Λ)]

=
N∑
n=1

K∑
k=1

znk log ρnk + const

log ρnk = E [log πk] + 1
2E [log |Λk|]−

D

2 log(2π)

− 1
2Eµ,Λ

[
(xn − µk)

′ Λk (xn − µk)
]

• Thus, the factor q∗(Z) takes the same functional form as the prior
p(Z | π)

q∗(Z) =
N∏
n=1

K∏
k=1

rznk
nk , rnk = ρnk∑K

j=1 ρnj

− By q∗(Z), the posterior mean (i.e., responsibility) E[znk] = rnk
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Define three statistics wrt the responsibilities

• For each of group k = 1, . . . ,K, denote

Nk =
N∑
n=1

rnk

x̄k = 1
Nk

N∑
n=1

rnkxn

Sk = 1
Nk

N∑
n=1

rnk (xn − x̄k) (xn − x̄k)′
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Variational solution for π

• Optimized factor

log q∗(π) = log p(π) + EZ [p(Z | π)]

= (α0 − 1)
K∑
k=1

log πk +
K∑
k=1

N∑
n=1

rnk log πnk + const

• Thus, q∗(π) is a Dirichlet distribution

q∗(π) = Dir(α), αk = α0 +Nk
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Variational solution for µk,Λk

• Optimized factor for (µk,Λk)

log q∗(µk,Λk) = EZ

[
N∑
n=1

znk log N
(
xn | µk,Λ−1

k

)]
+ log p(µk | Λk) + log p(Λk)

• Thus, q∗(µk,Λk) is Gaussian-Wishart

q∗(µk | Λk) = N
(
mk, (βkΛk)−1

)
q∗(Λk) = W(Λk |Wk, νk)

• Parameters are updated by the data

βk = β0 +Nk, mk = 1
βk

(β0m0 +Nkx̄k) , νk = ν0 +Nk

W−1
k = W−1

0 +NkSk + β0Nk

β0 +Nk
(x̄k −m0) (x̄k −m0)′
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Similarity between VI and EM solutions

• Optimization of the variational posterior distribution involves
cycling between two stages analogous to the E and M steps of the
maximum likelihood EM algorithm

− Finding q∗(Z): analogous to the E step, both need to compute the
responsibilities

− Finding q∗(π,µ,Λ): analogous to the M step

• The VI solution (Bayesian approach) has little computational
overhead, comparing with the EM solution (maximum likelihood
approach). The dominant computational cost for VI are

− Evaluation of the responsibilities
− Evaluation and inversion of the weighted data covariance matrices
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Advantage of the VI solution over the EM solution:

• Since our priors are conjugate, the variational posterior
distributions have the same functional form as the priors

1. No singularity arises in maximum likelihood when a Gassuain
component “collapses” onto a specific data point

− This is actually the advantage of Bayesian solutions (with priors)
over frequentist ones

2. No overfitting if we choose a large number K. This is helpful in
determining the optimal number of components without
performing cross validation

− For α0 < 1, the prior favors soutions where some of the mixing
coefficients π are zero, thus can result in some less than K number
components having nonzero mixing coefficients
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Computing variational lower bound

• To test for convergence, it is useful to monitor the bound during
the re-estimation.

• At each step of the iterative re-estimation, the value of the lower
bound should not decrease

L =
∑
Z

∫∫∫
q∗(Z,π,µ,Λ) log

{
p(X,Z,π,µ,Λ)
q∗(Z,π,µ,Λ)

}
dπdµdΛ

= E [log p(X,Z,π,µ,Λ)]− E [log q∗(Z,π,µ,Λ)]
= E [log p(X | Z,µ,Λ)] + E [log p(Z | π)]

+ E [log p(π)] + E [log p(µ,Λ)]
− E [log q∗(Z)]− E [log q∗(π)]− E [log q∗(µ,Λ)]
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Label switching problem

• EM solution of maximum likelihood does not have label switching
problem, because the initialization will lead to just one of the
solutions

• In a Bayesian setting, label switching problem can be an issue,
because the marginal posterior is multi-modal.

• Recall that for multi-modal posteriors, variational inference usually
approximate the distribution in the neighborhood of one of the
modes and ignore the others
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Induced factorizations
• Induced factorizations: the additional factorizations that are a

consequence of the interaction between

− the assumed factorization, and
− the conditional independence properties of the true distribution

• For example, suppose we have three variation groups A,B,C

− We assume the following factorization

q(A,B,C) = q(A,B)q(C)

− If A and B are conditional independent

A ⊥ B | X,C⇐⇒ p(A,B | X,C) = p(A | X,C)p(B | X,C)

then we have induced factorization q∗(A,B) = q∗(A)q∗(B)

log q∗(A,B) = EC [log p(A,B | X,C)] + const
= EC [log p(A | X,C)] + EC [log p(B | X,C)] + const
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Bayesian linear regression

• Here, I use a denotion system commonly used in statistics
textbooks. So its different from the one used in this book.

• Likelihood function

p(y | β) =
N∏
n=1

N
(
yn | xnβ, φ−1

)

− φ = 1/σ2 is the precision parameter. We assume that it is known.
− β ∈ Rp includes the intercept

• Prior distributions: Normal Gamma

p(β | κ) = N
(
β | 0, κ−1I

)
p(κ) = Gam(κ | a0, b0)
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Variational solution for κ
• Variational posterior factorization

q(β, κ) = q(β)q(κ)

• Varitional solution for κ

log q∗(κ) = log p(κ) + Eβ [log p(β | κ)]

= (a0 − 1) log κ− b0κ+ p

2 log κ− κ

2E
[
β′β

]
• Varitional posterior is a Gamma

κ ∼ Gam (aN , bN )

aN = a0 + p

2

bN = b0 + E
[
β′β

]
2
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Variational solution for β

• Variational solution for β

log q∗(β) = log p(y | β) + Eκ [log p(β | κ)]

= −φ2 (y−Xβ)2 − E [κ]
2 β′β

= −1
2β′

(
E [κ] I + φX′X

)
β + φβ′X′y

• Variational posterior is a Normal

β ∼ N (mN ,SN )

SN =
(
E [κ] I + φX′X

)−1

mN = φSNX′y
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Iteratively re-estimate the variational solutions

• Means of the variational posteriors

E[κ] = aN
bN

E[β′β] = mNm′N + SN

• Lower bound of log p(y) can be used in convergence monitoring,
and also model selection

L = E [log p(β, κ,y)]− E [log q∗(β, κ)]
= Eβ [log p(y | β)] + Eβ,κ [log p(β | κ)] + Eκ [log p(κ)]
− Eβ [log q∗(β)]− Eκ [log q∗(κ)]
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