
1

•
•
•
•
•

•
•
•
•
•
•
•

•

•

•
•

•
•

•

LEARNING PYTHON, PART 1: BASICS

1. Basic Operations

Power: a ** b
Mod: a % b
Assignment: =
Check equality: ==
Combine statements: use the keywords and for and; or for or. Note: & and |
may also be used, but sometimes weird things happen. So and and or seem
safer...
Comment: #
Stings: either ’’ or ”” are fine.
Dot . is NOT a usual character.
Semi-colon ; at the end of the sentence suppresses showing outputs.
Boolean values: True and False .
Use indent (white spaces) instead of brackets to separate a block of code.
None is the Python null. To check if some object is None , we use if x is
None:

Pass is a place holder for an indent block.

Types of numeric values and conversions

Usually, when data type is mixed in an operation, operands are pushed up the
numeric tower:
int -> float -> complex

We can use the type() function to check the type of an object.
In Python 2, int / int is integer division, not usual division!!!
If we want usual division, either

(1) make one of the number float, e.g., float(a) / b , or
(2) add this before the division, which use the / in Python 3:

from __future__ import division

In Python 3,

2

•
•

•

•

•

/ is regular division
// is integer division

print function
Note the syntax difference:

x = 'Hello world'

Only in Python 2

print x

In Python 3 (also works in Python 2)

print(x)

Formatted printing using the format method, for example,

print("Pi is approximately {0:.3f}".format(22./7.))

Note: Each specification has two parts: {index:format} .
- (1) index starts from 0; it is the index from the list, which is the input of the
format method.
- (2) format : an optional length and a mandatory one-letter data type code, such
as s (string), d (integer), f (float). The optional length is a.b or .b or a , where a
is the overall length (including sign and decimal dot), and b is number of decimal
places.
- (3) Another example:

x = value1

my_str = str1

print("My {} is {}".format(my_str, x))

The output is My str1 is value1

Use + to cancatnate

print('Hello' + 'world')

3

•

•

•

•

•

2. List

Create a list
Use bracket to define a list

a = [1, 2, 3]

A string is a list of characters.

s = 'abcdefg'

List indexing
Indexing in Python starts at 0.

s[0] ## returns 'a'

Negative index: from the right-hand side of the string

s[-1] ## returns 'g'

The colon : operator: returns the a th to the (b-1) th entries of the list:

s[a:b]

More examples:

s[2:] ## returns 'cdefg'

s[:4] ## returns 'abcd'

s[2:4] ## returns 'cd'

s[start:stop:step]

s[::-1] ## returns 'gfedcba'

4

•

•

•

•

•

•

•
•

•

List functions
range function

Returns a sequence of integers, starting from a , ends before but NOT including b .
This function is often used with the for loop.

range(a, b, step = 1)

Note 1: In Python 3, if we want the output to be a list, we can use
list(range(a,b)) . In python 2, just use range(a,b) .

Note 2: range(n) return a sequence from 0 to (n-1) .

To check if a value val is in a list lst ; returns a boolean value.
val in lst

String conversion to numeric: float('123.4')

Length of a list: len(s)

Compute sum of a numeric list: sum(s)

List copies

Suppose x is a list. And we define y=x . Then any future changes on y will also
apply to x .
Note: my understanding is that list is similar to a pointer (like in C).

This is also the case for sets and dictionaries.
How to copy a list, such that changing the copy doesn't affect the original list?

In Python 2, copy by slice
y = x[:]

5

•

•

•

•

•

•

In Python 3, use the .copy method
y = x.copy()

3. Dictionary

A list with no order among components.

Define a dictionary

a = {'key1': value, 'key2': value, …}

Or if we have a list key and a list value , then we can define the dictionary using

dict(zip(key, value))

Visit a dictionary component

a['key1'] ## Note: a[0] will return an error.

Add an element

a['key3'] = 4

Delete an element

del a['key1']

Length of a dictionary:

len(a)

6

•
•

•

•

4. Tuple and Set

Tuple: use () to define.
A tuple cannot be edited after defined.
A tuple is faster to use than a list.

b = (1, 2, 3)

b[0] ## returns 1

b[0] = 5 ## returns error

Tuples are immutable; there are no sort() , append() , reverse() , etc, for
tuples. This is why tuples are and faster (than lists). In this sense, tuples are
somehow like strings.

Change a dictionary a to a list of tuples, where each tuple is the (key, value)
pair.

a.items()

Set: use {} to define.
A set only contains unique elements.

d = {1, 2, 2, 3} ## Actually d = {1, 2, 3}

Or use the set function to return unique elements in a list

Create a set from a list

set([1, 2, 2, 3]) ## returns {1, 2, 3}

Create a set from a dictionary

set(a) ## returns a set of the dictionary keys

7

•
•
•
•
•

•

•

•

•

Set operations: suppose d1 and d2 are two sets.
| union
& intersection
- difference (in d1 but not in d2)
^ symmetric difference (in d1 but not in d2 , or in d2 but not in d1)

Set operation among multiple sets

set_name_list = [d1, d2, ...] ## is a list names of sets

set.interaction(*set_name_list)

Change a set to a list

list(d1)

5. If, Elif, and Else

If function
Use indent (white spaces) instead of brackets to indicate the block of code to
run if the statement is True .
Use colon : after the statement.

if statement:

 run1

 run2

if statement1:

 run1

elif statment2:

 run2

else:

8

•
•

•

 run3

6. Loops

For loops

for i in listx:

 run1

 run2

Note: when look through a dictionary or set, the order is random, because these
objects are unordered.

While loops

while statement1:

 run1

 run2

Partial loops
break exits from a loop
continue skip over the rest of indented block (for once)

List comprehension
Applies the operation to each element of the list

[operation_containing_i for i in listx]

for example

[2*i+1 for i in range(10)]

We can also add an optional if

[2*i+1 for i in range(10) if i % 2 == 0]

9

•

•
•

•

We can also use comprehension to create a set or a dictionary

{2*i+1 for i in range(10)} ## a set

{i: 2*i+1 for i in range(10)} ## a dictionary

7. Defining New Functions

Use def to define a new function.

def my_func(input1 = default1, input2 = default2):

 run1

 run2

 return x

A function name starts with a lower case letter.
Documentation string: multiple lines of comments, between two lines of three
double (or single) quotes in each line. The content is what help() displays.
We can return multiple things, separated by , . Then the returned values are in
a tuple.

Vector operation: map function
The map function applies a function to each element of a list. If we want the
output to be a list, then we can use the list function outside of the map function.

list(map(func, listx))

Vector operation: filter function
Returns the elements values in a list that satisfy the condition.

list(filter(condition, listx))

Anonymous function: lambda expression
For each input of x , this function returns the output operation_x .

10

lambda x:operation_x

for example

weird_math_lambda = lambda x,y: x*y+x/y-x**2

A lambda expression is usually combined with the map function.

list(map(lambda x:operation_x, listx))

8. Methods

Using object.method() to apply a certain method on an object.

String methods

my_str.lower() ## change all characters to lower case

my_str.upper() ## change all characters to upper case

my_str.split(delimiter = ' ') ## split the string (by spaces)

my_str.replace('old', 'new') ## replace old by new

Dictionary methods

d.keys() ## returns the keys of the dictionary

d.items() ## returns all items, as a list of two-element tuples

d.values() ## returns the values, not necessary in any order

List methods

lst.pop([index]) ## return the last (by default) element of lst,

and meanwhile remove it from lst

lst.remove(value) ## remove the first value in the list

del lst[index] ## remove the element of this index

lst.append(value) ## append the new value to the end of lst

11

•

•

lst.reverse() ## reverse the list

lst.sort() ## sort in ascending order

my_str.index(value) ## Find the index corresponds to the first

fvalue

9. Input (stdin)

In Python 2, use raw_input function.

raw_input('Input your name: ')

Alternatively, we can overwrite it to input (the original input function is Python 2
should not be used)

input = raw_input

input('Input your name: ')

In Python 3, use the input function directly.

10. Reading and Writing Files

Reading (or writing) a text file
First, we need to create an open object

file_x = open('filename', mode)

Notes:

12

•
•
•
•

mode is optional; it is a string containing one or more of the following:
r for reading
w for writing, which will remove previous contents in the file.
a for append.

Then, we can use the .read method to read:

file_x.read(size) ## if size is ommitted, read the whole file

file_x.readline() ## find `\n` to read a line

Alternative, we can also write the file

file_x.write('New contents')

Lastly, remember to close the file

file_x.close()

Reading a file using with (recommended!)
We don't need to worry about closing a file at the end, because the with
statement closes the file automatically.

with open('file_name') as file_x:

 x = file_x.read() ## block of codes

Reading or writing a CSV file
Use the csv library. To read a csv file:

Read a csv file

import csv

with open('some.csv','rb') as source_x:

13

•

•
•

•

•
•

 reader_x = csv.reader(source_x)

 for row in reader_x:

 print(row)

Notes:

In the open function, the mode b stands for binary. In Python 2, csv files are
treated as binaries.
The reader_x object is an iterable. Each row is a list of column values.
All column values are strings. If needed, number should be manually converted
using int() or float() .
We can add an optional argument in the csv.reader function to specify
delimiter: delimiter = '|'

If the csv file has headings (column names), we can use

reader_x = csv.DictReader(source_x)

In this case, each row of reader_x is a dictionary with column names being keys.

To write a csv file:

Write a csv file

import csv

with open('some.csv','wb') as target_x:

 writer_x = csv.writer(target_x)

 for row in some_source_of_data:

 writer_x.writerow(row)

Notes:

some_source_of_data is a list (or tuple) of each row
If we want headers, we can just write them as an extra row.

Reading JSON files

14

Use the json library.

import json

with open("some_file.json") as source:

 object = json.load(source)

