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LEARNING PYTHON, PART 1: BASICS

1. Basic Operations

Power: a ** b
Mod: a % b
Assignment: =
Check equality: ==
Combine statements: use the keywords and  for and; or for or. Note: &  and |
may also be used, but sometimes weird things happen. So and  and or  seem
safer...
Comment: #
Stings: either ’’  or ””  are fine.
Dot .  is NOT a usual character.
Semi-colon ;  at the end of the sentence suppresses showing outputs.
Boolean values: True  and False .
Use indent (white spaces) instead of brackets to separate a block of code.
None  is the Python null. To check if some object is None , we use if x is 
None:

Pass  is a place holder for an indent block.

Types of numeric values and conversions

Usually, when data type is mixed in an operation, operands are pushed up the
numeric tower:
int -> float -> complex

We can use the type()  function to check the type of an object.
In Python 2, int / int  is integer division, not usual division!!!
If we want usual division, either

(1) make one of the number float, e.g., float(a) / b , or
(2) add this before the division, which use the /  in Python 3:

from __future__ import division

In Python 3,
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/  is regular division
//  is integer division

print  function
Note the syntax difference:

x = 'Hello world'

## Only in Python 2

print x

## In Python 3 (also works in Python 2)

print(x)

Formatted printing using the format  method, for example,

print("Pi is approximately {0:.3f}".format(22./7.))

Note: Each specification has two parts: {index:format} .
- (1) index  starts from 0; it is the index from the list, which is the input of the 
format  method.
- (2) format : an optional length and a mandatory one-letter data type code, such
as s  (string), d  (integer), f  (float). The optional length is a.b  or .b  or a , where a
is the overall length (including sign and decimal dot), and b  is number of decimal
places.
- (3) Another example:

x = value1

my_str = str1

print("My {} is {}".format(my_str, x))

## The output is My str1 is value1

Use +  to cancatnate

print('Hello' + 'world')
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2. List

Create a list
Use bracket to define a list

a = [1, 2, 3]

A string is a list of characters.

s = 'abcdefg'

List indexing
Indexing in Python starts at 0.

s[0] ## returns 'a'

Negative index: from the right-hand side of the string

s[-1] ## returns 'g'

The colon :  operator: returns the a th to the (b-1) th entries of the list:

s[a:b] 

More examples:

s[2: ]  ## returns 'cdefg'

s[ :4]  ## returns 'abcd'

s[2:4]  ## returns 'cd'

s[start:stop:step] 

s[::-1] ## returns 'gfedcba'
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List functions
range  function

Returns a sequence of integers, starting from a , ends before but NOT including b .
This function is often used with the for  loop.

range(a, b, step = 1)

Note 1: In Python 3, if we want the output to be a list, we can use 
list(range(a,b)) . In python 2, just use range(a,b) .

Note 2: range(n)  return a sequence from 0  to (n-1) .

To check if a value val  is in a list lst ; returns a boolean value.
val in lst

String conversion to numeric: float('123.4')

Length of a list: len(s)

Compute sum of a numeric list: sum(s)

List copies

Suppose x  is a list. And we define y=x . Then any future changes on y  will also
apply to x .
Note: my understanding is that list is similar to a pointer (like in C).

This is also the case for sets and dictionaries.
How to copy a list, such that changing the copy doesn't affect the original list?

In Python 2, copy by slice 
y = x[:]
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In Python 3, use the .copy  method 
y = x.copy()

3. Dictionary

A list with no order among components.

Define a dictionary

a = {'key1': value, 'key2': value, …}

Or if we have a list key  and a list value , then we can define the dictionary using

dict(zip(key, value))

Visit a dictionary component

a['key1']  ## Note: a[0] will return an error.

Add an element

a['key3'] = 4

Delete an element

del a['key1']

Length of a dictionary:

len(a)
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4. Tuple and Set

Tuple: use ()  to define.
A tuple cannot be edited after defined.
A tuple is faster to use than a list.

b = (1, 2, 3)

b[0] ## returns 1

b[0] = 5 ## returns error

Tuples are immutable; there are no sort() , append() , reverse() , etc, for
tuples. This is why tuples are and faster (than lists). In this sense, tuples are
somehow like strings.

Change a dictionary a  to a list of tuples, where each tuple is the (key, value)
pair.

a.items()

Set: use {}  to define.
A set only contains unique elements.

d = {1, 2, 2, 3} ## Actually d = {1, 2, 3}

Or use the set  function to return unique elements in a list

## Create a set from a list

set([1, 2, 2, 3]) ## returns {1, 2, 3}

## Create a set from a dictionary

set(a) ## returns a set of the dictionary keys
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Set operations: suppose d1  and d2  are two sets.
|  union
&  intersection
-  difference (in d1  but not in d2 )
^  symmetric difference (in d1  but not in d2 , or in d2  but not in d1 )

Set operation among multiple sets

set_name_list = [d1, d2, ...] ## is a list names of sets

set.interaction(*set_name_list)

Change a set to a list

list(d1)

5. If, Elif, and Else

If function
Use indent (white spaces) instead of brackets to indicate the block of code to
run if the statement is True .
Use colon :  after the statement.

if statement:

    run1

    run2

if statement1:

    run1

elif statment2:

    run2  

else:
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    run3

6. Loops

For loops

for i in listx:

    run1

    run2

Note: when look through a dictionary or set, the order is random, because these
objects are unordered.

While loops

while statement1:

  run1

  run2

Partial loops
break  exits from a loop
continue  skip over the rest of indented block (for once)

List comprehension
Applies the operation to each element of the list

[operation_containing_i for i in listx] 

## for example

[2*i+1 for i in range(10)] 

We can also add an optional if

[2*i+1 for i in range(10) if i % 2 == 0] 
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We can also use comprehension to create a set or a dictionary

{2*i+1 for i in range(10)} ## a set

{i: 2*i+1 for i in range(10)} ## a dictionary

7. Defining New Functions

Use def  to define a new function.

def my_func(input1 = default1, input2 = default2):

    run1

    run2

    return x

A function name starts with a lower case letter.
Documentation string: multiple lines of comments, between two lines of three
double (or single) quotes in each line. The content is what help()  displays.
We can return multiple things, separated by , . Then the returned values are in
a tuple.

Vector operation: map  function
The map  function applies a function to each element of a list. If we want the
output to be a list, then we can use the list  function outside of the map  function.

list(map(func, listx))

Vector operation: filter  function
Returns the elements values in a list that satisfy the condition.

list(filter(condition, listx))

Anonymous function: lambda  expression
For each input of x , this function returns the output operation_x .
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lambda x:operation_x 

## for example

weird_math_lambda = lambda x,y: x*y+x/y-x**2

A lambda  expression is usually combined with the map  function.

list(map(lambda x:operation_x, listx))

8. Methods

Using object.method()  to apply a certain method on an object.

String methods

my_str.lower() ## change all characters to lower case

my_str.upper() ## change all characters to upper case

my_str.split(delimiter = ' ') ## split the string (by spaces)

my_str.replace('old', 'new') ## replace old by new

Dictionary methods

d.keys() ## returns the keys of the dictionary

d.items() ## returns all items, as a list of two-element tuples

d.values() ## returns the values, not necessary in any order

List methods

lst.pop([index]) ## return the last (by default) element of lst, 

and meanwhile remove it from lst

lst.remove(value) ## remove the first value in the list 

del lst[index] ## remove the element of this index

lst.append(value) ## append the new value to the end of lst
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lst.reverse() ## reverse the list

lst.sort() ## sort in ascending order

my_str.index(value) ## Find the index corresponds to the first 

fvalue

9. Input (stdin)

In Python 2, use raw_input  function.

raw_input('Input your name: ')

Alternatively, we can overwrite it to input  (the original input  function is Python 2
should not be used)

input = raw_input

input('Input your name: ')

In Python 3, use the input  function directly.

10. Reading and Writing Files

Reading (or writing) a text file
First, we need to create an open  object

file_x = open('filename', mode)

Notes:
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mode  is optional; it is a string containing one or more of the following:
r  for reading
w  for writing, which will remove previous contents in the file.
a  for append.

Then, we can use the .read  method to read:

file_x.read(size) ## if size is ommitted, read the whole file

file_x.readline() ## find `\n` to read a line

Alternative, we can also write the file

file_x.write('New contents')

Lastly, remember to close the file

file_x.close()

Reading a file using with  (recommended!)
We don't need to worry about closing a file at the end, because the with
statement closes the file automatically.

with open('file_name') as file_x:

    x = file_x.read() ## block of codes

Reading or writing a CSV file
Use the csv  library. To read a csv file:

## Read a csv file

import csv

with open('some.csv','rb') as source_x:
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    reader_x = csv.reader(source_x)

    for row in reader_x:

        print(row)

Notes:

In the open  function, the mode b  stands for binary. In Python 2, csv files are
treated as binaries.
The reader_x  object is an iterable. Each row is a list of column values.
All column values are strings. If needed, number should be manually converted
using int()  or float() .
We can add an optional argument in the csv.reader  function to specify
delimiter: delimiter = '|'

If the csv file has headings (column names), we can use

reader_x = csv.DictReader(source_x)

In this case, each row of reader_x  is a dictionary with column names being keys.

To write a csv file:

## Write a csv file

import csv

with open('some.csv','wb') as target_x:

    writer_x = csv.writer(target_x)

    for row in some_source_of_data:

        writer_x.writerow(row)

Notes:

some_source_of_data  is a list (or tuple) of each row
If we want headers, we can just write them as an extra row.

Reading JSON files
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Use the json  library.

import json

with open("some_file.json") as source:

    object = json.load(source)


