LEARNING PYTHON, PART 1: BASICS

1. Basic Operations

- Power: a ** b

« Mod:a % b

- Assignment: =

+ Check equality: ==

- Combine statements: use the keywords and for and; oxrfor or. Note: & and |
may also be used, but sometimes weird things happen. So and and or seem
safer...

- Comment: #

. Stings: either 7 or 7~ are fine.

- Dot . is NOT a usual character.

- Semi-colon ; atthe end of the sentence suppresses showing outputs.

- Boolean values: True and False.

- Use indent (white spaces) instead of brackets to separate a block of code.

« None is the Python null. To check if some objectis None, we use if x is
None:

- Pass is a place holder for an indent block.
Types of numeric values and conversions

- Usually, when data type is mixed in an operation, operands are pushed up the
numeric tower:
int -> float -> complex

- We can use the type() function to check the type of an object.
- In Python 2, int / int is integer division, not usual division!!!
If we want usual division, either
- (1) make one of the number float, e.g., float(a) / b, or
+ (2) add this before the division, which use the / in Python 3:

from __future__ import division

« In Python 3,

- / isregulardivision
- // isinteger division

print function
« Note the syntax difference:

x = 'Hello world'

Only in Python 2

print x

In Python 3 (also works in Python 2)
print(x)

- Formatted printing using the format method, for example,

print("Pi is approximately {0:.3f}".format(22./7.))

Note: Each specification has two parts: {index:format}.

- (1) index starts from 0; it is the index from the list, which is the input of the
format method.

- (2) format: an optional length and a mandatory one-letter data type code, such
as s (string), d (integer), £ (float). The optional lengthis a.b or .b or a, where a
is the overall length (including sign and decimal dot), and b is number of decimal
places.

- (8) Another example:

x = valuel

my_str = stri1

print("My {3} is {}".format(my_str, x))
The output is My strl is valuel

- Use + to cancatnate

print('Hello' + 'world')

2. List

Create a list
. Use bracket to define a list

- Astring is a list of characters.

s = 'abcdefg'

List indexing
- Indexing in Python starts at O.

s[0] ## returns 'a‘'

- Negative index: from the right-hand side of the string

s[-1] ## returns 'g’'

- The colon : operator: returns the ath tothe (b-1) th entries of the list:

s[a:b]

More examples:

s[2:] ## returns 'cdefg'
s[:4] ## returns 'abcd'
s[2:4] ## returns 'cd'
s[start:stop:step]

s[::-1] ## returns 'gfedcba'

List functions
- range function

Returns a sequence of integers, starting from a, ends before but NOT including b.
This function is often used with the for loop.

range(a, b, step = 1)

Note 1: In Python 3, if we want the output to be a list, we can use
list(range(a,b)).In python 2, just use range(a,b).

Note 2: range(n) return a sequence from o to (n-1).

- Tocheckifavalue val isinalist 1st; returns a boolean value.

val in 1lst
- String conversion to numeric: float('123.4"')
- Length of alist: len(s)
- Compute sum of a numeric list: sum(s)
List copies
- Suppose x is a list. And we define y=x. Then any future changes on y will also
apply to x.

Note: my understanding is that list is similar to a pointer (like in C).

- Thisis also the case for sets and dictionaries.
« How to copy a list, such that changing the copy doesn't affect the original list?

- In Python 2, copy by slice
y = x[:]

« In Python 3, use the .copy method
y = x.copy()

3. Dictionary

A list with no order among components.

- Define a dictionary

a = {'keyl': value, 'key2': value, ..}

Or if we have alist key and a list value, then we can define the dictionary using

dict(zip(key, value))

« Visit a dictionary component

a['keyl'] ## Note: a[0] will return an error.

. Add an element

a['key3'] = 4

. Delete an element

del a['keyl']

- Length of a dictionary:

len(a)

4. Tuple and Set

Tuple: use () to define.
« Atuple cannot be edited after defined.
« Atuple is faster to use than a list.

b = (1, 2, 3)
b[0] ## returns 1
b[0] = 5 ## returns error

« Tuples are immutable; there are no sort(), append(), reverse(), etc, for

tuples. This is why tuples are and faster (than lists). In this sense, tuples are
somehow like strings.

« Change a dictionary a to a list of tuples, where each tuple is the (key, value)
pair.

a.items()

Set: use {3} to define.
A set only contains unique elements.

d = {1, 2, 2, 3} ## Actually d = {1, 2, 3}

Or use the set function to return unique elements in a list

Create a set from a list

set([1, 2, 2, 3]) ## returns {1, 2, 3}

Create a set from a dictionary

set(a) ## returns a set of the dictionary keys

- Set operations: suppose d1 and d2 are two sets.
« | union
- & intersection
- - difference (in d1 but notin d2)
-~ symmetric difference (in d1 but notin d2, orin d2 but notin d1)

- Set operation among multiple sets

set_name_list = [d1, d2, ...] ## is a list names of sets

set.interaction(*set_name_list)

« Change asettoalist

list(d1)

5. If, Elif, and Else

If function
- Use indent (white spaces) instead of brackets to indicate the block of code to
run if the statement is True.
« Usecolon : afterthe statement.

if statement:
runl

run2

if statementil:
runl

elif statment2:
run2

else:

run3

6. Loops

For loops

for i in listx:
runl

run2

Note: when look through a dictionary or set, the order is random, because these
objects are unordered.

While loops

while statementi:
runl

run2

Partial loops
- break exits from a loop
- continue skip over the rest of indented block (for once)

List comprehension
Applies the operation to each element of the list

[operation_containing_i for i in listx]
for example

[2*i+1 for i in range(10)]

« We can also add an optional if

[2*¥i+1 for i in range(10) if i % 2 == 0]

« We can also use comprehension to create a set or a dictionary

{2*i+1 for i in range(10)} ## a set

{i: 2*i+1 for i in range(10)} ## a dictionary

7. Defining New Functions

Use def to define a new function.

def my_func(inputl = defaultl, input2 = default2):
runl
run2

return x

- Afunction name starts with a lower case letter.

- Documentation string: multiple lines of comments, between two lines of three
double (or single) quotes in each line. The content is what help() displays.

« We can return multiple things, separated by , . Then the returned values are in
atuple.

Vector operation: map function
The map function applies a function to each element of a list. If we want the
output to be alist, then we can use the 1ist function outside of the map function.

list(map(func, listx))

Vector operation: filter function
Returns the elements values in a list that satisfy the condition.

list(filter(condition, listx))

Anonymous function: lambda expression
For each input of x, this function returns the output operation_x.

lambda x:operation_x
for example

weird_math_lambda = lambda x,y: X*y+x/y-x**2

A lambda expression is usually combined with the map function.

list(map(lambda x:operation_x, listx))

8. Methods

Using object.method() to apply a certain method on an object.

String methods

my_str.lower() ## change all characters to lower case
my_str.upper() ## change all characters to upper case
my_str.split(delimiter = ' ') ## split the string (by spaces)

my_str.replace('old', 'new') ## replace old by new

Dictionary methods

d.keys() ## returns the keys of the dictionary
d.items() ## returns all items, as a list of two-element tuples

d.values() ## returns the values, not necessary in any order

List methods

1st.pop([index]) ## return the last (by default) element of 1lst,

and meanwhile remove it from 1lst

lst.remove(value) ## remove the first value in the list

del 1lst[index] ## remove the element of this index

lst.append(value) ## append the new value to the end of 1st

10

lst.reverse() ## reverse the list
1st.sort() ## sort in ascending order

my_str.index(value) ## Find the index corresponds to the first

fvalue

9. Input (stdin)

- In Python 2, use raw_input function.

raw_input('Input your name: ')

Alternatively, we can overwrite it to input (the original input function is Python 2
should not be used)

input = raw_input

input('Input your name: ')

« In Python 3, use the input function directly.

10. Reading and Writing Files

Reading (or writing) a text file
First, we need to create an open object

file_x = open('filename', mode)

Notes:

11

- mode is optional; it is a string containing one or more of the following:

- 1 forreading
- w for writing, which will remove previous contents in the file.

- a forappend.

Then, we can use the .read method to read:

file_x.read(size) ## if size is ommitted, read the whole file

file_x.readline() ## find ‘\n' to read a line

Alternative, we can also write the file
file_x.write('New contents')
Lastly, remember to close the file

file_x.close()

Reading a file using with (recommended!)
We don't need to worry about closing a file at the end, because the with

statement closes the file automatically.

with open('file_name') as file_x:
x = file_x.read() ## block of codes

Reading or writing a CSV file

Use the csv library. To read a csv file:

Read a csv file

import csv

with open('some.csv','rb') as source_x:

12

reader_x = csv.reader(source_x)
for row in reader_x:

print(row)

Notes:

« Inthe open function, the mode b stands for binary. In Python 2, csv files are
treated as binaries.

- The reader_x objectis an iterable. Each row is a list of column values.

+ All column values are strings. If needed, number should be manually converted
using int() or float().

- We can add an optional argument in the csv.reader function to specify
delimiter: delimiter = '|'

If the csv file has headings (column names), we can use

reader_x = csv.DictReader(source_x)

In this case, each row of reader_x is a dictionary with column names being keys.

To write a csv file:

Write a csv file

import csv

with open('some.csv','wb') as target_x:
writer_x = csv.writer(target_x)
for row in some_source_of_data:

writer_x.writerow(row)

Notes:

- some_source_of_data is alist (or tuple) of each row
- If we want headers, we can just write them as an extra row.

Reading JSON files

13

Use the json library.

import json
with open("some_file.json") as source:

object = json.load(souzrce)

14

