
1

•
•

•

•
•
•

•

LEARNING PYTHON, PART 4: ADVANCED
PROGRAMMING

1. Data Streams

Iterables and iterators
Iterables: data types such as list or tuple
Changes iterbales to iterators

lst_iter = lst.__iter__()

Step through each element in an iterator

Python 2

next(lst_iter) ## also works in Python 3

lst_iter.next()

Python 3

__next__(lst_iter) ## or

lst_iter.__next__()

Generators
Generators can be used to maximize memory efficiency:

Items are loaded into memory only as needed.
Items are not saved when the generator is advanced to the next item.

Can be used in the for loop

Non-generator version

for i in [1, 2, 3, 4, 5]:

 pass;

Generator version (recommended!)

for i in (1, 2, 3, 4 5):

 pass;

2

•

•

•
•
•

Can be used in the list comprehension, wrapped around by parentheses.

suppose x is a list or a tuple, then

x_gen = (formula_i for i in x if condition)

In Python 2:
xrange(n) : the generator counterpart of range(n) ; can be used in the for
loop or list comprehension.
In Python 3:
range(n) is a generator.

Reading (large) files
Use open() function
Use .rstrip() to remove the newlines
Use .split(',') to separate the columns

with open(filename, 'r') as handler:

 for line in handler:

 print([int(i) for i in line.rstrip().split(',')])

Creating generators
We can define a function, for example

Define a function

def count_by_n(n):

 for i in xrange(5):

 yield n * i

Create a generator of (0, 7, 14, 21, 28)

x_gen = count_by_n(7)

Note: Every time the next() function is called on a generator, the generator runs
until it reaches a yield statement, returns that value, and then waits.

3

•

2. Data Structure: Classes

Defining a class
For example, called Xclass

class Xclass(object):

 def __init__(self, attribute1, attribute2):

 self.attribute1 = attribute1

 self.attribute2 = attribute2

 def func(self):

 return self.attribute1 * self.attribute2

Note: In Python 2, remember to add the (object) when defining the class; while
in Python 3, it can be omitted since it's assumed.

Create a class

Create a class

xc1 = Xclass(value1, value2)

Access class attributes

xc1.attribute1 ## returns value1

Apply class functions

xc1.func()

Change an attribute in a class

Change an attribute in a class

xc1.attribute1 = new_value

However, this should be used with caution, because other attributes may depend
on attribute1 , but changing attribute1 won't automatically change others.

4

So in order to avoid the above change of value, we can use double underscore
__attribute1 when defining the class, and also write functions to view and
change this attribute.

class Xclass(object):

 def __init__(self, attribute1, attribute2):

 self.__attribute1 = attribute1

 self.attribute2 = attribute2

 def get_attribute1(self):

 return self.__attribute1

 def set_attribute1(self, new_value)

 self.__attribute1 = new_value

Note that in this case

xc1.__attribute1 ## returns an error of no such attibutes

xc1.get_attribute1() ## returns the value of __attribute1

xc1.set_attribute1(new_value) ## changes the value of __attribute1

Super and sub classes
In the following example, Dog is a sub-class of Animal , and Animal is a sub-class
of object .

class Animal(object):

 def __init__(self,age,price):

 self.age = age

 self.price = price

class Dog(Animal):

 def __init__(self,age, price, breed):

 self.breed = breed

 super(Dog,self).__init__(age, price)

5

•

•
•

Notes:
(1) The function super retrieves the parent of the current class Dog , which is
Animal . So this let us to call methods of the parent class.

Check if an object is a member of a class

isinstance(object, class) ## returns True or False

The use of *args and **kwargs
When defining functions

To pass an arbitrary number of variables.

*args passes non-keyworded arguments into a tuple.
**kwargs passes keyworded arguments into a dictionary

def foo(*args, **kwargs): ##

 print('args = {}'.format(args))

 print('kwargs = {}'.format(kwargs))

 for item in kwargs: ## item is each keyword in kwargs

 print('item = {0}: {1}'.format(item, kwargs[item]))

foo(4, 5, 6, a=1, b=2)

returns:

args = (4, 5, 6)

kwargs = {'a': 1, 'b': 2}

item = a: 1

item = b: 2

Notes:
(1) It's * and ** that are important; whether using args kwargs or other names
doesn't matter.
(2) *args must be before **kwargs

When call functions
To unpack a list or dictionary into arguments

6

•
•

*args unpack a list into multiple arguments.
**kwargs unpack a dictionary into keyworded arguments.

3. Writing Good Codes

Assertions
An assertions is to make sure something must be true at a certain point in the
program. For example, when defining a function, to make sure a certain argument
is always positive, otherwise, the traceback (error message) will say
"AssertionError", followed by the reason stated in the assert function.

def foo(balance):

 assert balance > 0, 'balance must be positive.'

 pass

Two rules of adding assertions:

1. Good code catches mistakes as early as possible.
2. Turn bugs in to assertions or tests.

Exceptions
If any of the code in the try block yields an error (of the ErrorType), then run the
except block.

try:

 block of code

except ErrorType:

 block of code

Note: ErrorType is optional (but recommended); the common ones are IOError ,
SyntaxError , NameError , IndexError , KeyError , Exception .

4. Modules and Packages (i.e., Libraries)

7

•
•

•

•

•

A module is a python file, and a package is a folder containing python files. Either
can be referred to as a library.

General rules for file and module names:

A module name is all lower case.
A file name starts with a lower case letter, and continues with letters,
numbers, and _ .

Import a module
Import the whole module as a namespace

Import the module mdl

import mdl

Use a function foo in the module mdl

mdl.foo()

Extract one item (e.g., a function) in the module

Only import the foo function, not the whole module

from mdl import foo

Use this function; no need to add mdl. in the front

foo()

Note: import all function in a module from mdl import * is not recommended
because this may cause confusion if multiple modules having items with the
same name.

Create a module
In a script file or a library module:

To enable executing the file in the command line via ./some_file.py , Line 1 of
the file some_file.py is

#!/usr/bin/env python

8

•

•

•

•

•

•

•

•

•
•

The first code is a module level docstring

'''

This is a script which does something useful.

'''

A version after the docstring

__version__ = '00.05.01'

Then, a group of import that this module replies on.

Finally, the code (that defines new functions).

Test code at the end of the script:

if __name__ == '__main__'

At the end of a script, we can add the function evaluation after this if
statement.
The global variable __name__ is set to the module name when an import is
running, and it is set to __main__ if the main script is running.
So when this is run as a script, the code block after this if statement will run.
When this is imported into another script, the code after this if statement
won't run.

Create a package
A package must contain a module named __init__.py , and this file can be
empty. This differentiate a Python library (which is a folder) with any other
folders that contain Python files.
Avoid to create (often nested) packages. A flat list of modules are preferred.
Install a package: in the command line,

9

•

•

•

•

pip install pkg

5. Write Code Tests

Test-driven development: write tests (in a new test_foo function) before
writing the code for the actual function foo .

Keep tests in separate files from the programs (main functions), e.g., foo.py
vs test_foo.py . In this case, the first line in the test file can be

import foo

Unite test

A unit test: one line of assert to check one situation of the function.

We can put multiple unit tests in the unit testing framework. In the following
example, we build a class TestRO for testing, which has several individual test
functions inside.

import unittest

class TestRO(unittest.TestCase):

 def test_ro_case1(self):

 self.assertCase1(foo(var1))

 def test_ro_case2(self):

 self.assertCase2(foo(var2))

Run all tests

unittest.main()

Notes:

10

•

•
•

•

•

In the output of unittest.main() , the first line is the summary, where .
stands for a pass and F for a failure.

Docstring test (doctest)
Examples can be copied to the docstring using Python prompt >>> .
After defining the function, we can run the examples in the docstring:

import doctest

doctest.testmode()

Nose package
A third party package. It finds all functions that contain 'test' or 'Test' as a
word or followed by _ or - , and run these functions. We can run Nose in
command line,

$ nosetests file.py

When the filename contain 'test' , we can even omit the file name in the
command line.

Performance tests: time
The time.clock() function in the time module is similar to the proc.time()
function in R.

import time

s1 = time.clock()

block of code

s2 = time.clock()

print(s2 - s1)

