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Confounding

• Confounders: variables that affect both the treatment and the
outcome

− If we assign treatment based on a coin flip, since the coin flip
doesn’t affect the outcome, it’s not a confounder

− If older people are at higher risk of heart disease (the outcome) and
are more likely to receive the treatment, then age is a confounder

• To control for confounders, we need to

1. Identify a set of variables X that will make the ignorability
assumption hold

− Causal graphs will help answer this question

2. Use statistical methods to control for these variables and estimate
causal effects
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Overview of graphical models

• Encode assumption about relationship among variables

− Tells use which variables are independent, dependent, conditionally
independent, etc
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Terminology of graphs

• Directed graph: shows that A affects Y

A Y

• Undirected graph: A and Y are associated with each other

A Y

• Nodes or vertices: A and Y

− We can think of them as variables

• Edge: the link between A and Y

• Directed graph: all edges are directed

• Adjacent variables: if connected by an edge
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Paths

W Z B

A

• A path is a way to get from one vertex to another, traveling along
edges

• There are 2 paths from W to B:

− W → Z → B
− W → Z → A→ B
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Directed Acyclic Graphs (DAGs)

• No undirected paths

Z B

A

• No cycles

Z B

A

• This is a DAG

Z B

A
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More terminology

A Z D

B

• A is Z ’s parent
• D has two parents, B and Z
• B is a child of Z
• D is a descendant of A
• Z is a ancestor of D
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DAG example 1

A B C

D

• C is independent of all variables

P (C | A, B, D) = P (C)

• B and C, D are independent, conditional on A

P (B | A, C, D) = P (B | A)⇐⇒ B ⊥ C, D | A

• B and D are marginally dependent

P (B | D) 6= P (B)
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DAG example 2

A B C

D

• A and B are independent, conditional on C and D

P (A | B, C, D) = P (A | C, D)⇐⇒ A ⊥ B | C, D

• C and D are independent, conditional on A and B

P (D | A, B, C) = P (D | A, B)⇐⇒ D ⊥ C | A, B
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Decomposition of joint distributions

1. Start with roots (nodes with no parents)

2. Proceed down the descendant line, always conditioning on
parents

A B C

D

• P (A, B, C, D) = P (C)P (D)P (A | D)P (B | A)

A B C

D

• P (A, B, C, D) = P (D)P (A | D)P (B | D)P (C | A, B)
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Compatibility between DAGs and distributions

• In the above examples, the DAGs admit the probability
factorizations. Hence, the probability function and the DAG are
compatible

• DAGs that are compatible with a particular probability function are
not necessarily unique

− Example1:

A B

− Example 2:

A B

− In both of the above examples, A and B are dependent, i.e.,
P (A, B) 6= P (A)P (B)
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Types of paths

• Forks

D E F

• Chains

D E F

• Inverted forks

D E F
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When do paths induce associations?

• If nodes A and B are on the ends of a path, then they are
associated (via this path), if

− Some information flows to both of them (aka Fork), or
− Information from one makes it to the other (aka Chain)

• Example: information flows from E to A and B

E

D G

A B

• Example: information from A makes it to B

A G D F B
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Paths that do not induce association

• Information from A and B collide at G

A G B

• G is a collider

• A and B both affect G:

− Information does not flow from G to either A or B
− So A and B are independent (if this is the only path between

them)

• If there is a collider anywhere on the path from A to B, then no
association between A and B comes from this path

A G D B
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Blocking on a chain

• Paths can be blocked by conditioning on nodes in the path

• In the graph below, G is a node in the middle of a chain. If we
condition on G, then we block the path from A to B

A G B

• For example, A is the temperature, G is whether sidewalks are icy,
and B is whether someone falls
− A and B are associated marginally
− But if we conditional on the sidewalk condition G, then A and B are

independent
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Blocking on a fork

• Associations on a fork can also be blocked

• In the following fork, if we condition on G, then the path from A to
B is block

A G B
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No need to to block a collider

• The opposite situation occurs if a conllider is blocked

A G B

• In the following inverted fork

− Originally A and B are not associated, since information collides at
G

− But if we condition on G, then A and B become associated

• Example: A and B are the states of two on/off switches, and G is
whether the lightbulb is lit up.

− The two switches A and B are determined by two independent coin
flips

− G is lit up only if both A and B are in the on state

− Conditional on G, the two switches are not independent: if G is off,
then A must be off if B is on
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d-separation

• A path is d-separated by a set of nodes C if

− It contains a chain (D → E → F ) and the middle part is in C, or

− It contains a fork (D ← E → F ) and the middle part is in C, or

− It contains an inverted fork (D → E ← F ), and the middle part is
not in C, nor are any descendants of it

• Two nodes, A and B, are d-separated by a set of nodes C if it
blocks every path from A to B. Thus

A ⊥ B | C

• Recall the ignorability assumption

Y 0, Y 1 ⊥ A | X
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Confounders on paths

• A simple DAG: X is a confounder between the relationship
between treatment A and outcome Y

X

A Y

• A slightly more complicated graph

− V affects A directly
− V affects Y indirectly, through W
− Thus, V is a confounder

V W

A Y
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Frontdoor paths

• A frontdoor path from A to Y is one that begins with an arrow
emanating out of A

• We do not worry about frontdoor paths, because they capture
effects of treatment

• Example: A→ Y is a frontdoor path from A to Y

X

A Y

• Example: A→ Z → Y is a frontdoor path from A to Y

X

ZA Y
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Do not block nodes on the frontdoor path

• If we are interested in the causal effect of A on Y , we should not
control for (aka block) Z

− This is because controlling for Z would be controlling for an affect
of treatment

X

ZA Y

• Causal mediation analysis involves understanding frontdoor paths
from A and Y
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Backdoor paths

• Backdoor paths from treatment A to outcome Y are paths from A
to Y that travels through arrows going into A

• Here, A← X → Y is a backdoor path from A to Y

X

A Y

• Backdoor paths confound the relationship between A and Y , so
they need to be blocked!

• To sufficiently control for confounding, we must identify a set of
variables that block all backdoor paths from treatment to outcome

− Recall the ignorability: if X is this set of variables, then
Y 0, Y 1 ⊥ A | X
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Criteria

• Next we will discuss two criteria to identify sets of variables that
are sufficient to control for confounding

− Backdoor path criterion: if the graph is known
− Disjunctive cause criterion: if the graph is not known
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Backdoor path criterion

• Backdoor path criterion: a set of variables X is sufficient to control
for confounding if

− It blocks all backdoor paths from treatment to the outcome, and
− It does not include any descendants of treatment

• Note: the solution X is not necessarily unique
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Backdoor path criterion: a simple example

V W

A Y

• There is one backdoor path from A to Y

− It is not blocked by a collider

• Sets of variables that are sufficient to control for confounding:

− {V }, or
− {W}, or
− {V, W}
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Backdoor path criterion: a collider example

M

V W

A Y

• There is one backdoor path from A to Y

− It is blocked by a collider M , so there is no confounding

• If we condition on M , then it open a path between V and W

M

V W

A Y

• Sets of variables that are sufficient to control for confounding:
− {}, {V }, {W}, {M, V }, {M, W}, {M, V, W}
− But not {M}
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Backdoor path criterion: a multi backdoor paths example

A

V

W

Z Y

• First path: A← Z ← V → Y

− No collider on this path
− So controlling for either Z, V , or both is sufficient

• Second path: A←W → Z ← V → Y

− Z is a collider
− So controlling Z opens a path between W and V
− We can block {V }, {W}, {Z, V }, {Z, W}, or {Z, V, W}

• To block both paths, it’s sufficient to control for

− {V }, {Z, V }, {Z, W}, or {Z, V, W}
− But not {Z} or {W} 28



Disjunctive cause criterion

• For many problems, it is difficult to write down accurate DAGs

• In this case, we can use the disjunctive cause criterion: control for
all observed causes of the treatment, the outcome, or both

• If there exists a set of observed variables that satisfy the backdoor
path criterion, then the variables selected based on the disjunctive
cause criterion are sufficient to control for confounding

• Disjunctive cause criterion does not always select the smallest set
of variable to control for, but it is conceptually simple
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Example

• Observed pre-treatment variables: {M, W, V }

• Unobserved pre-treatment variables: {U1, U2}

• Suppose we know: W, V are causes of A, Y or both

• Suppose M is not a cause of either A or Y

• Comparing two methods for selecting variables

1. Use all pre-treatment covariates: {M, W, V }
2. Use variables based on disjunctive cause criterion: {W, V }
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Example continued: hypothetical DAG 1

M V W

A Y

1. Use all pre-treatment covariates: {M, W, V }

− Satisfy backdoor path criterion? Yes

2. Use variables based on disjunctive cause criterion: {W, V }

− Satisfy backdoor path criterion? Yes
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Example continued: hypothetical DAG 2

M

V W

A Y

1. Use all pre-treatment covariates: {M, W, V }

− Satisfy backdoor path criterion? Yes

2. Use variables based on disjunctive cause criterion: {W, V }

− Satisfy backdoor path criterion? Yes
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Example continued: hypothetical DAG 3

W A Y V

U1 U2

M

1. Use all pre-treatment covariates: {M, W, V }

− Satisfy backdoor path criterion? No

2. Use variables based on disjunctive cause criterion: {W, V }

− Satisfy backdoor path criterion? Yes
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Example continued: hypothetical DAG 4

M

U1 W U2

A Y V

1. Use all pre-treatment covariates: {M, W, V }

− Satisfy backdoor path criterion? No

2. Use variables based on disjunctive cause criterion: {W, V }

− Satisfy backdoor path criterion? No
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