Course Notes: A Crash Course on Causality – Week 4: Inverse Probability of Treatment Weighting (IPTW)

Yingbo Li

07/29/2021

Table of Contents

Inverse Probability of Treatment Weighting

Marginal Structural Models

Assessing covariate balance with weights

Problems and remedies for large weights

Motivating example

• Suppose there is a single confounder X, with propensity scores

 Treated
 Control

 X=1
 •
 •

 X=0
 •
 •

 $P(A = 1 \mid X = 1) = 0.1, \quad P(A = 1 \mid X = 0) = 0.8$

- In propensity score matching, for subjects with *X* = 1, 1 out of 9 controls will be matched to the treated
 - Thus, 1 person in the treated group counts the same as 9 people from the control group
 - So rather than matching, we could use all data, but down-weight each control subject to be just 1/9 of the treated subject

Inverse probability of treatment weighting (IPTW)

- IPTW weights: inverse of the probability of treatment received
 - For treated subjects, weight by 1/P(A = 1 | X)
 - For control subjects, weight by 1/P(A = 0 | X)
- In the previous example
 - For X = 1, the weight for a treated subject is 1/0.1 = 10, and the weight for a control subject is $1/0.9 = \frac{10}{9}$
 - For X = 0, the weight for a treated subject is $1/0.8 = \frac{5}{4}$, and the weight for a control subject is 1/0.2 = 5
- Motivation: in survey sampling, it is common to oversample some subpopulation, and then use Horvitz-Thompson estimator to estimate population means

Pseudo population

- IPTW creates a pseudo-population where treatment assignment no longer depend on *X*
 - So there is no confounding in the pseudo-population

- In the original population, some people were more likely to get treated based on their *X*'s
- In the pseudo-population, everyone is equally likely to get treated, regardless of their *X*'s

Estimation with IPTW

• We can estimate $E(Y^1)$ as below

$$\frac{\sum_{i=1}^{n} \frac{1}{\pi_i} A_i Y_i}{\sum_{i=1}^{n} \frac{1}{\pi_i} A_i}$$

- where $\pi_i = P(A_i = 1|X_i)$ is the propensity score
- The numerator is the sum of Y's in treated pseudo-population
- The denominator is the number of subjects in treated pseudo-population
- We can estimate $E(Y^0)$ as below

$$\frac{\sum_{i=1}^{n} \frac{1}{1-\pi_i} (1-A_i) Y_i}{\sum_{i=1}^{n} \frac{1}{1-\pi_i} (1-A_i)}$$

• Average treatment effect: $E(Y^1) - E(Y^0)$

Marginal structural models

- Marginal structural models (MSM): a model for the mean of the potential outcomes
- **Marginal**: not conditional on the confounders (population average)
- Structural: for potential outcomes, not observed outcomes

Linear MSM and logistic MSM

Linear MSM

$$E(Y^a) = \psi_0 + \psi_1 a, \quad a = 0, 1$$

$$- E(Y^0) = \psi_0, E(Y^0) = \psi_0 + \psi_1$$

- So the average causal effect

$$E(Y^1) - E(Y^0) = \psi_1$$

Logistic MSM

$$logit{E(Y^a)} = \psi_0 + \psi_1 a, \quad a = 0, 1$$

- So the causal odds ratio

$$\frac{\frac{P(Y^1=1)}{1-P(Y^1=1)}}{\frac{P(Y^0=1)}{1-P(Y^0=1)}} = \psi_1$$

MSM with effect modification

- Suppose V is a variable that modifies the effect of A
- A linear MSM with effect modification

$$E(Y^{a} \mid V) = \psi_{0} + \psi_{1}a + \psi_{3}V + \psi_{4}aV, \quad a = 0, 1$$

So the average causal effect

$$E(Y^1) - E(Y^0) = \psi_1 + \psi_4 V$$

General MSM

$$g\{E(Y^a \mid V)\} = h(a, V; \psi)$$

- g(): link function
- h(): a function specifying parametric from of a and V (typically additive, linear)

MSM estimation using pseudo-population

• Because of confounding, MSM

 $g\{E(Y^a \mid V)\} = \psi_0 + \psi_1 a$

is difference from GLM (generalized linear model)

$$g\{E(Y_i \mid A_i)\} = \psi_0 + \psi_1 A_i$$

- Pseudo-population (obtained from IPTW) is free of confounding
 - We therefore estimate MSM by solving GLM with IPTW

MSM estimation steps

- 1. Estimate propensity score, using logistic regression
- 2. Create weights
 - Inverse of propensity score for treated subjects
 - Inverse of one minus propensity score for control subjects
- 3. Specify the MSM of interest
- 4. Use software to fit a weighted generalized linear model
- 5. Use asymptotic (sandwich) variance estimator
 - This accounts for fact that pseudo-population might be larger than sample size

Bootstrap

- · We may also use bootstrap to estimate standard error
- Bootstrap steps
 - 1. Randomly sample with replacement from the original sample
 - 2. Estimate parameters
 - 3. Repeat steps 1 and 2 many times
 - 4. Use the standard deviation of the bootstrap estimates as an estimate of the standard error

Covariate balance check with standardized differences

 Covariate balance: can be checked on the weighted sample using standardized difference

$$smd = \frac{\bar{X}_{\text{treatment}} - \bar{X}_{\text{control}}}{\sqrt{\frac{s_{\text{treatment}}^2 + s_{\text{control}}^2}{2}}}$$

- Weighted means $\bar{X}_{\text{treatment}}$, \bar{X}_{control} Weighted variances $s_{\text{treatment}}^2$, s_{control}^2

Balance check tools

• Table 1

	Raw (unweighted) data			Weighted data		
	No RHC	RHC	SMD	No RHC	RHC	SMD
n	3551	2184				
age	61.76	60.75	0.06	61.36	61.43	0.00
female	0.46	0.41	0.09	0.45	0.45	0.00
meanbp1	84.87	68.20	0.46	78.60	79.26	0.02
ARF	0.45	0.42	0.06	0.44	0.44	0.01
CHF	0.07	0.10	0.10	0.08	0.08	0.01
Cirr	0.05	0.02	0.15	0.04	0.04	0.00
colcan	0.00	0.00	0.04	0.00	0.00	0.04
Coma	0.10	0.04	0.21	0.08	0.07	0.02
lungcan	0.01	0.00	0.10	0.01	0.01	0.01
MOSF	0.07	0.07	0.02	0.07	0.07	0.00
sepsis	0.15	0.32	0.42	0.21	0.22	0.00

• SMD plot

If imbalance after weighting

- Refine propensity score model
 - Interactions
 - Non-linearity
- Then reaccess balance

Larger weights lead to more noise

- For an object with a large weight, its outcome data can greatly affect parameter estimation
- An object with large weight can also affect standard error estimation, via bootstrap, depending on whether the object is selected or not
- An extremely large weights means the probability of that treatment is very small, thus a potential violation of the positivity assumption

Check weights via plots and summary statistics

 Investigate very large weights: identify the subjects with large weights and find what's unusual about them


```
> summary(weight)
                           Mean 3rd Ou.
   Min. 1st Ou. Median
                                           Max.
         1.405
  1.046
                  1.721
                          2.001
                                  2.280
                                         21.610
> tail(sort(weight))
    5704
             3863
                      5321
                               4783
                                        1923
                                                  795
12.92463 13.05365 17.22758 18.53865 19.64197 21.60581
> head(sort(weight))
    4137
             5693
                      4196
                               3714
                                         196
                                                 3981
1.046143 1.048020 1.050994 1.054465 1.057399 1.057524
```

Option 1: trimming the tails

- Large weights: occur in the tails of the propensity score distribution
- Trim the tails to eliminate some extreme weights
 - Remove treated subjects whose propensity scores are above the 98th percentile from the distribution among controls
 - Remove control subjects whose propensity scores are below the 2nd percentile from the distribution among treated
- Note: trimming the tails changes the population

Option 2: truncating the weights

- Another option to deal with large weights is truncation
- Weight truncation steps
 - 1. Determine a maximum allowable weight
 - Can be a specific value (e.g., 100)
 - Can based on a percentile (e.g., 99th)
 - 2. If a weight is greater than the maximum allowable, set it to the maximum allowable value
- Bias-variance trade-off
 - Truncation: bias, but smaller variance
 - No truncation: unbiased, larger variance
- Truncating extremely large weights can result in estimators with lower MSE

References

- Coursera class: "A Crash Course on Causality: Inferring Causal Effects from Observational Data", by Jason A. Roy (University of Pennsylvania)
 - https://www.coursera.org/learn/crash-course-in-causality