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Motivating example

• Suppose there is a single confounder X, with propensity scores

P (A = 1 | X = 1) = 0.1, P (A = 1 | X = 0) = 0.8

• In propensity score matching, for subjects with X = 1, 1 out of 9
controls will be matched to the treated

− Thus, 1 person in the treated group counts the same as 9 people
from the control group

− So rather than matching, we could use all data, but down-weight
each control subject to be just 1/9 of the treated subject
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Inverse probability of treatment weighting (IPTW)

• IPTW weights: inverse of the probability of treatment received

− For treated subjects, weight by 1/P (A = 1 | X)
− For control subjects, weight by 1/P (A = 0 | X)

• In the previous example

− For X = 1, the weight for a treated subject is 1/0.1 = 10, and the
weight for a control subject is 1/0.9 = 10

9

− For X = 0, the weight for a treated subject is 1/0.8 = 5
4 , and the

weight for a control subject is 1/0.2 = 5

• Motivation: in survey sampling, it is common to oversample some
subpopulation, and then use Horvitz-Thompson estimator to
estimate population means
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Pseudo population

• IPTW creates a pseudo-population where treatment assignment
no longer depend on X

− So there is no confounding in the pseudo-population

• In the original population, some people were more likely to get
treated based on their X ’s

• In the pseudo-population, everyone is equally likely to get treated,
regardless of their X ’s
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Estimation with IPTW

• We can estimate E(Y 1) as below∑n
i=1

1
πi
AiYi∑n

i=1
1
πi
Ai

− where πi = P (Ai = 1|Xi) is the propensity score
− The numerator is the sum of Y ’s in treated pseudo-population
− The denominator is the number of subjects in treated

pseudo-population

• We can estimate E(Y 0) as below∑n
i=1

1
1−πi

(1−Ai)Yi∑n
i=1

1
1−πi

(1−Ai)

• Average treatment effect: E(Y 1)− E(Y 0)
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Marginal structural models

• Marginal structural models (MSM): a model for the mean of the
potential outcomes

• Marginal: not conditional on the confounders (population
average)

• Structural: for potential outcomes, not observed outcomes
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Linear MSM and logistic MSM

• Linear MSM
E(Y a) = ψ0 + ψ1a, a = 0, 1

− E(Y 0) = ψ0, E(Y 0) = ψ0 + ψ1
− So the average causal effect

E(Y 1)− E(Y 0) = ψ1

• Logistic MSM

logit{E(Y a)} = ψ0 + ψ1a, a = 0, 1

− So the causal odds ratio

P (Y 1=1)
1−P (Y 1=1)

P (Y 0=1)
1−P (Y 0=1)

= ψ1
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MSM with effect modification

• Suppose V is a variable that modifies the effect of A

• A linear MSM with effect modification

E(Y a | V ) = ψ0 + ψ1a+ ψ3V + ψ4aV, a = 0, 1

− So the average causal effect

E(Y 1)− E(Y 0) = ψ1 + ψ4V

• General MSM
g{E(Y a | V )} = h(a, V ;ψ)

− g(): link function
− h(): a function specifying parametric from of a and V (typically

additive, linear)
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MSM estimation using pseudo-population

• Because of confounding, MSM

g{E(Y a | V )} = ψ0 + ψ1a

is difference from GLM (generalized linear model)

g{E(Yi | Ai)} = ψ0 + ψ1Ai

• Pseudo-population (obtained from IPTW) is free of confounding

− We therefore estimate MSM by solving GLM with IPTW
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MSM estimation steps

1. Estimate propensity score, using logistic regression

2. Create weights

− Inverse of propensity score for treated subjects
− Inverse of one minus propensity score for control subjects

3. Specify the MSM of interest

4. Use software to fit a weighted generalized linear model

5. Use asymptotic (sandwich) variance estimator

− This accounts for fact that pseudo-population might be larger than
sample size
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Bootstrap

• We may also use bootstrap to estimate standard error

• Bootstrap steps

1. Randomly sample with replacement from the original sample

2. Estimate parameters

3. Repeat steps 1 and 2 many times

4. Use the standard deviation of the bootstrap estimates as an
estimate of the standard error
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Covariate balance check with standardized differences

• Covariate balance: can be checked on the weighted sample using
standardized difference

smd = X̄treatment − X̄control√
s2

treatment+s
2
control

2

− Weighted means X̄treatment, X̄control
− Weighted variances s2

treatment, s
2
control
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Balance check tools

• Table 1

• SMD plot
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If imbalance after weighting

• Refine propensity score model

− Interactions
− Non-linearity

• Then reaccess balance
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Larger weights lead to more noise

• For an object with a large weight, its outcome data can greatly
affect parameter estimation

• An object with large weight can also affect standard error
estimation, via bootstrap, depending on whether the object is
selected or not

• An extremely large weights means the probability of that treatment
is very small, thus a potential violation of the positivity assumption
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Check weights via plots and summary statistics

• Investigate very large weights: identify the subjects with large
weights and find what’s unusual about them
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Option 1: trimming the tails

• Large weights: occur in the tails of the propensity score
distribution

• Trim the tails to eliminate some extreme weights

− Remove treated subjects whose propensity scores are above the
98th percentile from the distribution among controls

− Remove control subjects whose propensity scores are below the
2nd percentile from the distribution among treated

• Note: trimming the tails changes the population
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Option 2: truncating the weights

• Another option to deal with large weights is truncation

• Weight truncation steps

1. Determine a maximum allowable weight

− Can be a specific value (e.g., 100)
− Can based on a percentile (e.g., 99th)

2. If a weight is greater than the maximum allowable, set it to the
maximum allowable value

• Bias-variance trade-off

− Truncation: bias, but smaller variance
− No truncation: unbiased, larger variance

• Truncating extremely large weights can result in estimators with
lower MSE
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