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Motivating example

e Suppose there is a single confounder X, with propensity scores

PA=1]X=1)=01, P(A=1|X=0)=08
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¢ |n propensity score matching, for subjects with X =1, 1 out of 9
controls will be matched to the treated

— Thus, 1 person in the treated group counts the same as 9 people
from the control group

— So rather than matching, we could use all data, but down-weight
each control subject to be just 1/9 of the treated subject



Inverse probability of treatment weighting (IPTW)

¢ |[PTW weights: inverse of the probability of treatment received

— For treated subjects, weightby 1/P(A=1| X)
— For control subjects, weightby 1/P(A =0 X)

® |n the previous example

— For X = 1, the weight for a treated subject is 1/0.1 = 10, and the

weight for a control subject is 1/0.9 = 2

— For X = 0, the weight for a treated subject is 1/0.8 = 2, and the
weight for a control subjectis 1/0.2 =5

e Motivation: in survey sampling, it is common to oversample some
subpopulation, and then use Horvitz-Thompson estimator to
estimate population means



Pseudo population

e |[PTW creates a pseudo-population where treatment assignment

no longer depend on X

— So there is no confounding in the pseudo-population
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¢ In the original population, some people were more likely to get

treated based on their X'’s

¢ |In the pseudo-population, everyone is equally likely to get treated,

regardless of their X’s



Estimation with IPTW
e We can estimate E(Y'!) as below
=AY

i=1 7,

n 1 A.
= )
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— where m; = P(A; = 1]X;) is the propensity score

— The numerator is the sum of Y’s in treated pseudo-population

— The denominator is the number of subjects in treated
pseudo-population

e We can estimate £ (Y") as below
zT'L:l 1_1m. (1 - Az)Yz
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e Average treatment effect: £(Y!) — E(Y?)



Marginal structural models

e Marginal structural models (MSM): a model for the mean of the
potential outcomes

e Marginal: not conditional on the confounders (population
average)

e Structural: for potential outcomes, not observed outcomes



Linear MSM and logistic MSM

e Linear MSM
E(Ya) :wo—i-wﬂl, a:O,l

— E(Y?) =, E(Y?) = tho + 1
— So the average causal effect

E(Y') - E(Y°) =1
¢ Logistic MSM

logit{ E(Y*)} = 1o +t¢1a, a=0,1

— So the causal odds ratio

P(Yl=1)
T—PYT=1)
“pooy — W
T-P(Yo=1)



MSM with effect modification

e Suppose V is a variable that modifies the effect of A

e A linear MSM with effect modification

EY*| V) =10+ v1a+ 3V +1uaV, a=0,1

— So the average causal effect
E(Y') = EQY®) =41 + PV
e General MSM
HEXY* | V)} = h(a,V;¢)

— ¢(): link function
— h(): a function specifying parametric from of a and V' (typically
additive, linear)



MSM estimation using pseudo-population

¢ Because of confounding, MSM

HEY | V)} = tho + tha

is difference from GLM (generalized linear model)
g{EY: | Ai)} = tho + 14y

e Pseudo-population (obtained from IPTW) is free of confounding
— We therefore estimate MSM by solving GLM with IPTW



MSM estimation steps

. Estimate propensity score, using logistic regression
2. Create weights

— Inverse of propensity score for treated subjects
— Inverse of one minus propensity score for control subjects

3. Specify the MSM of interest
4. Use software to fit a weighted generalized linear model
5. Use asymptotic (sandwich) variance estimator

— This accounts for fact that pseudo-population might be larger than
sample size



Bootstrap

¢ We may also use bootstrap to estimate standard error

e Bootstrap steps

1.

Randomly sample with replacement from the original sample

. Estimate parameters

2
3.
4

Repeat steps 1 and 2 many times

. Use the standard deviation of the bootstrap estimates as an

estimate of the standard error



Covariate balance check with standardized differences

e Covariate balance: can be checked on the weighted sample using
standardized difference

o Xireatment — Xcontrol

smd =
82 + 82
treatment ' “control
2

— Weighted means Xireatment, Xcontrol

. . 5 >
— Weighted variances sjqaiments Seontrol




Balance check tools

* Table 1
Raw (unweighted) data Weighted data

No RHC RHC SMD No RHC RHC SMD
n 3551 2184  ~
age 61.76 60.75 0.06 61.36 61.43 0.00
female 0.46 0.41 0.09 0.45 0.45 0.00
meanbpl 84.87 68.20 0.46_ 78.60 79.26 0.02
ARF 0.45 0.42 0.06 0.44 0.44 0.01
CHF 0.07 0.10 0.10 0.08 0.08 0.01
Cirr 0.05 0.02 0.15 0.04 0.04 0.00
colcan 0.00 0.00 0.04 0.00 0.00 0.04
Coma 0.10 0.04 021 0.08 0.07 0.02
lungcan 0.01 0.00 0.10 0.01 0.01 0.01
MOSF 0.07 0.07 0.02 0.07 0.07 0.00
sepsis 0.15 0.32 042 0.21 0.22 0.00

e SMD plot



If imbalance after weighting

¢ Refine propensity score model

— Interactions
— Non-linearity

e Then reaccess balance



Larger weights lead to more noise

e For an object with a large weight, its outcome data can greatly
affect parameter estimation

e An object with large weight can also affect standard error
estimation, via bootstrap, depending on whether the object is
selected or not

¢ An extremely large weights means the probability of that treatment
is very small, thus a potential violation of the positivity assumption



Check weights via plots and summary statistics

¢ Investigate very large weights: identify the subjects with large
weights and find what’s unusual about them
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> summary(weight)
Min. 1st Qu. Median Mean 3rd Qu. Max.
1.046 1.405 1.721 2.001 2.280 21.610
> tail(sort(weight))

5704 3863 5321 4783 1923 795
12.92463 13.05365 17.22758 18.53865 19.64197 21.60581
> head(sort(weight))

4137 5693 4196 3714 196 3981
1.046143 1.048020 1.050994 1.054465 1.057399 1.057524



Option 1: trimming the tails

e Large weights: occur in the tails of the propensity score
distribution

¢ Trim the tails to eliminate some extreme weights

— Remove treated subjects whose propensity scores are above the
98th percentile from the distribution among controls

— Remove control subjects whose propensity scores are below the
2nd percentile from the distribution among treated

¢ Note: trimming the tails changes the population



Option 2: truncating the weights

Another option to deal with large weights is truncation

Weight truncation steps
1. Determine a maximum allowable weight

— Can be a specific value (e.g., 100)
— Can based on a percentile (e.g., 99th)

2. If a weight is greater than the maximum allowable, set it to the
maximum allowable value

Bias-variance trade-off

— Truncation: bias, but smaller variance
— No truncation: unbiased, larger variance

Truncating extremely large weights can result in estimators with
lower MSE
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