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Concepts of MCAR, MAR, MNAR

® Missing completely at random (MCAR): the probability of being

missing is the same for all cases
— Cause of missing is unrelated to the data
¢ Missing at random (MAR): the probability of being missing only
depends on the observed data
— Cause of missing is unrelated to the missing values
® Missing not at random (MNAR): probability of being missing
depends on the missing values themselves



Listwise deletion and pairwise deletion

e Listwise deletion (also called complete-case analysis): delete
rows which contain one or more missing values

— If data is MCAR, listwise deletion produces unbiased estimates of
means, variances, and regression weights (if need to train a

predictive model)
— If data is not MCAR, listwise deletion can severely bias the above

estimates.
® Pairwise deletion (also called available-case analysis)

— Mean and variance of variable X are based on all cases with

observed data on X
— Covariance and correlation of X and Y is based on all data which

both X and Y have non-missing values



Mean imputation

e Compared with the observed data, in the imputed data (observed
+ imputed values)
— Standard deviations decrease
— Correlation decreases
— Means can be biased if the data is not MCAR.
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Figure 1.2: Mean imputation of 0zone . Blue indicates the observed data, red indicates the imputed

values.



Regression imputation

1. Build a regression model from the observed data
2. Impute the missing values in the response variable with the

predicted values from the fitted regression

® The impute values are the most likely values under the model

— However, it decreases the variance of the target variable
— And it increases the correlations between the target and covariates

® Regression imputation, and its modern incarnations in machine
learning is probably the most dangerous of all ad-hoc methods
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Stochastic regression imputation

1. Build a regression model from the observed data
2. Impute a missing value in the response variable with the predicted
value plus a random draw from the residual

e Preserves variance and correlation.
¢ Imputed values can exceed the range (e.g., a negative Ozone
level). A more suitable model may resolve this.
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Figure 1.4: Stochastic regression imputation of 0zone .



LOCF and BOCF

e | ast observation carried forward (LOCF) and baseline observation
carried forward (BOCF) are for longitudinal data.

e LOCF can yield biased estimation even under MCAR.
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Figure 1.5: Imputation of 0zone by last observation carried forward (LOCF).



Indicator method

¢ Not for imputation, but for building predictive models
¢ Only works for missing in covariates, not the target variables



Summary of ad-hoc imputation methods

e Note: the unbiasness of regression coefficients are assess with
the variable containing missing values as the target variable

Table 1.1: Overview of assumptions made by ad-hoc methods.

Unbiased Standard Error
Mean Reg Weight Correlation
Listwise MCAR MCAR MCAR Too large
Pairwise MCAR MCAR MCAR Complicated
Mean MCAR - - Too small
Regression MAR MAR - Too small
Stochastic MAR MAR MAR Too small
LOCF - - - Too small

Indicator - - - Too small



Multiple imputation creates m > 1 complete datasets

e Three steps of multiple imputation
1. Imputation
2. Analysis: train separate models
3. Pooling: variance among m parameter estimates combines the
conventional sampling variance (within-imputation variance) and
the extra variance caused by the missing data (between-imputation
variance)

Incomplete data  Imputed data  Analysis results  Pooled result

Figure 1.6: Scheme of main steps in multiple imputation.



Why using multiple imputation?

e |t provides a mechanism to deal with the inherent uncertainty of
the imputations

e |t separate the solution of the missing data problem from the
solution of the complete-data problem (train predictive models on
complete data)



Multiple imputation example using the mice package

## Load the mice package

library(mice);

## Impute 20 times, using preditive mean matching

imp <- mice(airquality, seed = 1, m = 20, print = FALSE)
## Fit linear regressions

fit <- with(imp, 1lm(Ozone ~ Wind + Temp + Solar.R))

## Pooled regression estimates

pander (summary (pool (£fit)))

term estimate  std.error  statistic df p.value
(Intercept)  -60.21 21.57 -2.791 100.3  0.006

Wind -3.174 0.644 -4.927 83.29 0

Temp 1.584 0.228 6.959 125.7 0

Solar.R 0.058 0.023 2.454 79.63  0.016
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