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Notations

• m: number of multiple imputations

• Y : data of the sample

− Includes both covariates and response
− Dimension n× p

• R: observation indicator matrix, known

− A n× p 0-1 matrix
− rij = 0 for missing and 1 for observed

• Yobs: observed data

• Ymis: missing data

• Y = (Yobs, Ymis): complete data

• ψ: the parameter for the missing mechanism

• θ: the parameter for the full data Y

3



Concepts of MCAR, MAR, and MNAR, with notations

• Missing completely at random (MCAR)

P (R = 0 | Yobs, Ymis, ψ) = P (R = 0 | ψ)

• Missing at random (MAR)

P (R = 0 | Yobs, Ymis, ψ) = P (R = 0 | Yobs, ψ)

• Missing not at random (MNAR)

P (R = 0 | Yobs, Ymis, ψ) does not simplify
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Ignorable

• The missing data mechanism is ignorable for likelihood inference
(on θ), if

1. MAR, and
2. Distinctness: the parameters θ and ψ are independent (from a

Bayesian’s view)

• If the nonresponse if ignorable, then

P (Ymis | Yobs, R) = P (Ymis | Yobs)

Thus, if the missing data model is ignorable, we can model θ just
using the observed data
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Goal of multiple imputation

• Note: for most multiple imputation practice, this goal is to train a
(predictive) model with as small variances of the parameters as
possible

• Q: estimand (the parameter to be estimated)

• Q̂: estimate

− Unbias

E(Q̂ | Y ) = Q

− Confidence valid:
E(U | Y ) ≥ V (Q̂ | Y )

where U is the estimated covariance matrix of Q̂, the expectation is
over all possible samples, and V (Q̂ | Y ) is the variance caused by
the sampling process
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Within-variance and between-variance

E(Q | Yobs) = EYmis|Yobs
{E(Q | Yobs, Ymis)}

V (Q | Yobs) = EYmis|Yobs
{V (Q | Yobs, Ymis)}︸ ︷︷ ︸
within-variance

+VYmis|Yobs
{E(Q | Yobs, Ymis)}︸ ︷︷ ︸

between variance

• Within-variance: average of the repeated complete-data posterior
variance of Q, estimated by

Ū = 1
m

m∑
l=1

Ūl,

where Ūl is the variance of Q̂l in the lth imputation

• Between-variance: variance between the complete-data posterior
means of Q, estimated by

B = 1
m− 1

m∑
l=1

(
Q̂l − Q̄

) (
Q̂l − Q̄

)′
, Q̄ = 1

m

m∑
l=1

Q̂l
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Decomposition of total variation

• Since Q̄ is estimated using finite m, the contribution to the
variance is about B/m. Thus, the total posterior variance of Q can
be decomposed into three parts:

T = Ū +B +B/m = Ū +
(

1 + 1
m

)
B

• Ū : the conventional variance, due to sampling rather than getting
the entire population.

• B: the extra variance due to missing values

• B/m: the extra simulation variance because Q̄ is estimated for
finite m

− Traditionally choices are m = 3, 5, 10, but the current advice is to
use a larger m, e.g., m = 50
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Properness of an imputation procedure

• An imputation procedure is confidence proper for complete-data
statistics Q̂, U , if it satisfies the following three conditions
approximately at large m

E
(
Q̄ | Y

)
= Q̂

E
(
Ū | Y

)
= U(

1 + 1
m

)
E(B | Y ) ≥ V (Q̄)

− Here Q̂ is the complete-sample estimator of Q, and U is its
covariance

− If we replace the ≥ by > in the third formula, then the procedure is
said to be proper

− It is not always easy to check whether a procedure is proper.
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Scope of the imputation model

• Broad: one set of imputations to be used for all projects and
analyses

• Intermediate: one set of imputations per project and use this for
all analyses

• Narrow: a separate imputed dataset is created for each analysis

• Which one is better: depends on the use case

10



Variance ratios
• Proportion of variation attributable to the missing data

λ = B +B/m

T

− If λ > 0.5, then the influence of the imputation model on the final
result is larger than that of the complete-data model

• Relative increase in variance due to nonresponse

r = B +B/m

Ū
= λ

1− λ

• Fraction of information about Q missing due to nonresponse

γ = r + 2/(ν + 3)
1 + r

= ν + 1
ν + 3λ+ 2

ν + 3

− Here, ν is the degrees of freedom (see next)
− When ν is large, γ is very close to λ

11



Degrees of freedom (df)
• The degrees of freedom is the number of observations after

accounting for the number of parameters in the model.

• The “old” formula (as in Rubin 1987): may produce values larger
than the sample size in the complete data

νold = (m− 1)
(

1 + 1
r2

)
= m− 1

λ2

• Let νcom be the conventional df in a complete-data inference
problem. If the number of parameters in the model is k and the
sample size is n, then νcom = n− k. The estimated observed data
df that accounts for the missing information is

νobs = νcom + 1
νcom + 3νcom(1− λ)

• Barnard-Rubin correction: the adjusted df to be used for testing in
multiple imputation is

ν = νoldνobs

νold + νobs
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A numerical example

## Load the mice package
library(mice);
imp <- mice(nhanes, print = FALSE, m = 10, seed = 24415)
fit <- with(imp, lm(bmi ~ age))
est <- pool(fit); print(est, digits = 2)

## Class: mipo m = 10
## term m estimate ubar b t dfcom df riv lambda fmi
## 1 (Intercept) 10 30.8 3.4 2.52 6.2 23 9.2 0.82 0.45 0.54
## 2 age 10 -2.3 0.9 0.39 1.3 23 12.3 0.48 0.32 0.41

• Columns ubar, b, and t are the variances
• Column dfcom is νcom
• Column df is the Barnard-Rubin correction ν
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T-test for regression coefficients

• Use the Barnard-Rubin correction of ν as the shape parameter of
t-distribution.

print(summary(est, conf.int = TRUE), digits = 1)

## term estimate std.error statistic df p.value 2.5 % 97.5 %
## 1 (Intercept) 31 2 12 9 5e-07 25 36.4
## 2 age -2 1 -2 12 7e-02 -5 0.2
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Imputation evaluation criteria

• The following criteria are useful in simulation studies (when you
know the true Q)

1. Raw bias (RB): upper limit 5%

RB =

∣∣∣∣∣∣
E
(
Q̄
)
−Q

Q

∣∣∣∣∣∣
2. Coverage rate (CR): A CR below 90% for the nominal 95% interval

is bad

3. Average width (AW) of confidence interval

4. Root mean squared error (RMSE): the smaller the better

RMSE =
√(

E
(
Q̄
)
−Q

)2
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Imputation is not prediction

• Shall we evaluate an imputation method by examine how it can
closely recover the missing values?

− For example, using the RMSE to see if the imputed values ẏi are
close to the true (removed) missing data ymis

i ?

RMSE =

√√√√ 1
nmis

nmis∑
i=1

(
ymis

i − ẏi

)2

• NO! This will favor least squares estimates, and it will find the
same values over and over; and thus it is single imputation. This
ignores the inherent uncertainty of the missing values.
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When not to use multiple imputation

• For predictive modeling, if the missing values are in the target
variable Y , then complete-case analysis and multiple imputation
are equivalent.

• Two special cases where listwise deletion is better than multiple
imputation

1. If the probability to be missing does not depend on Y

2. If the complete data model is logistic regression, and the missing
data are confined to Y , not X
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