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Background and notations
• Before computer age, multiple testing may only involve 10 or 20

tests. With the emerge of biomedical (microarray) data, multiple
testing may need to evaluate several thousands of tests

• Notations

− N : total number of tests, e.g., number of genes.
− zi: the z-statistic of the i-th test. Note that if we perform tests other

than z-test, say a t-test, then we can use inverse-cdf method to
transform the t-statistic into a z-statistic, like below

zi = Φ−1 [Fdf (ti)] ,

where Φ is the standard normal cdf, and F is a t distribution cdf.
− I0: the indices of the true H0i, having N0 members. Usually,

majority of hypotheses are null, so π0 = N0/N is close to 1.

• Hypotheses: standard normal vs normal with a non-zero mean

H0i : zi ∼ N(0, 1)←→ H1i : zi ∼ N(µi, 1)

where µi is the effect size for test i
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Example: the prostate data
• A microarray data of

− n = 102 people, 52 prostate cancer patients and 50 normal controls
− N = 6033 genes

Figure 1: Histogram of 6033 z-values, with the scaled standard normal
density curve in red
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Classical multiple testing method 1: Bonferroni bound

• For an overall significance level α (usually α = 0.05), with N
simultaneous tests, the Bonferroni bound rejects the ith null
hypothesis H0i at individual significance level

pi ≤
α

N

• Bonferroni bound is quite conservative!

− For prostate data N = 6033 and α = 0.05, the p-value rejection
cutoff is very small: pi ≤ 8.3× 10−6
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Classical multiple testing method 2: FWER control

• The family-wise error rate is the probability of making even one
false rejection

FWER = P (reject any true H0i)

• Bonferroni’s procedure controls FWER, i.e., Bonferroni bound is
more conservative than FWER control

FWER = P

{
∪i∈I0

(
pi ≤

α

N

)}
≤
∑
i∈I0

P

(
pi ≤

α

N

)
= N0

α

N
≤ α
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FWER control: Holm’s procedure

1. Order the observed p-values from smallest to largest

p(1) ≤ p(2) ≤ . . . ≤ p(i) . . . ≤ p(N)

2. Let imax be the largest index i such that

p(i) ≤ Threshold(Holm’s) = α

N − i+ 1 , for all i ≤ imax

3. Reject null hypotheses H0(i) for all i ≤ imax

• FWER is usually still too conservative for large N , since it was
originally developed for N ≤ 20
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An R function to implement Holm’s procedure

## A function to obtain Holm's procedure p-value cutoff
## TO BE CORRECTED!
holm = function(pi, alpha=0.1){

N = length(pi)
idx = order(pi)
reject = which(pi[idx] <= alpha/(N - 1:N + 1))

return(idx[reject])
}

## Download prostate data's z-values
link = 'https://web.stanford.edu/~hastie/CASI_files/DATA/prostz.txt'
prostz = c(read.table(link))$V1
## Convert to p-values
prostp = 1 - pnorm(prostz)
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Illustrate Holm’s procedure on the prostate data

## Apply Holm's procedure on the prostate data
results = holm(prostp)
## Total number of rejected null hypotheses
r = length(results); r

## [1] 6
## The largest z-value among non-rejected nulls
sort(prostz, decreasing = TRUE)[r + 1]

## [1] 4.13538
## The smallest p-value among non-rejected nulls
sort(prostp)[r + 1]

## [1] 1.771839e-05
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False discovery proportion
• FDR control is a more liberal criterion (compared with FWER),

thus it has become standard for large N multiple testing problems.

• False discovery proportion

Fdp(D) =
{
a/R, if R 6= 0
0, if R = 0

− A decision rule D rejects R out of N null hypotheses
− a of those are false discoveries (unobservable)
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False discovery rate

• False discovery rates

FDR(D) = E{Fdp(D)}

• A decision rule D controls FDR at level q, if

FDR(D) ≤ q

− q is a prechosen value between 0 and 1
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Benjamini-Hochberg FDR control

1. Order the observed p-values from smallest to largest

p(1) ≤ p(2) ≤ . . . ≤ p(i) . . . ≤ p(N)

2. Let imax be the largest index i such that

p(i) ≤ Threshold(Dq) = q

N
i, for all i ≤ imax

3. Reject null hypotheses H0(i) for all i ≤ imax

• Default choice q = 0.1

• Theorem: if the p-values are independent of each other, then the
above procedure controls FDR at level q, i.e.,

FDR(Dq) = π0q ≤ q, where π0 = N0/N

− Usually, majority of the hypotheses are truly null, so π0 is near 1
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An R function to implement Benjamini-Hochberg FDR
control

## A function to obtain Holm's procedure p-value cutoff
## TO BE CORRECTED!
bh = function(pi, q=0.1){

N = length(pi)
idx = order(pi)
reject = which(pi[idx] <= q/N * (1:N))

return(idx[reject])
}
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Illustrate Benjamini-Hochberg FDR control on the
prostate data

## Apply Holm's procedure on the prostate data
results = bh(prostp)
## Total number of rejected null hypotheses
r = length(results); r

## [1] 28
## The largest z-value among non-rejected nulls
sort(prostz, decreasing = TRUE)[r + 1]

## [1] 3.293507
## The smallest p-value among non-rejected nulls
sort(prostp)[r + 1]

## [1] 0.0004947302
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Comparing Holm’s FWER control and
Benjamini-Hochberg FDR control
• In the usual range of interest, large N and small i, the ratio

Threshold(Dq)
Threshold(Holm’s)

= q

α

(
1− i− 1

N

)
i

increases with i almost linearly

• The figure below is about the prostate data, with α = q = 0.1
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Question about the FDR control procedure

1. Is controlling a rate (i.e., FDR) as meaningful as controlling a
probability (of Type 1 error)?

2. How should q be chosen?

3. The control theorem depends on independence among the
p-values. What if they’re dependent, which is usually the case?

4. The FDR significance for one gene depends on the results of all
other genes. Does this make sense?
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Two-groups model

• Each of the N cases (e.g., genes) is

− either null with prior probability π0,
− or non-null with probability π1 = 1− π0

• For case i, its z-value zi under Hij for j = 0, 1 has density fj(z),
cdf Fj(z), and survival curve

Sj(z) = 1− Fj(z)

• The mixture survival curve

S(z) = π0S0(z) + π1S1(z)
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Bayesian false-discovery rate
• Suppose the observation zi for case i is seen to exceed some

threshold value z0 (say z0 = 3). By Bayes’ rule, the Bayesian
false-discovery rate is

Fdr(z0) = P (case i is null | zi ≥ z0)

= π0S0(z0)
S(z0)

• The “empirical” Bayes reflects in the estimation of the
denominator: when N is large,

Ŝ(z0) = N(z0)
N

, N(z0) = #{zi ≥ z0}

• An empirical Bayes estimate of the Bayesian false-discovery rate

F̂dr(z0) = π0S0(z0)
Ŝ(z0)
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Connection between F̂dr and FDR controls

• Since pi = S0(zi) and Ŝ(z(i)) = i/N , the FDR control Dq algorithm

p(i) ≤
i

N
· q

becomes
S0(z(i)) ≤ Ŝ(z(i)) · q,

After rearranging the above formula, we have its Bayesian Fdr
bounded

F̂dr(z0) ≤ π0q (1)

• The FDR control algorithm is in fact rejecting those cases for
which the empirical Bayes posterior probability of nullness is too
small
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Answer the 4 questions about the FDR control
1. (Rate vs probability) FDR control does relate to the posterior

probability of nullness

2. (Choice of q) We can set q according to the maximum tolerable
amount of Bayes risk of nullness, usually after taking π0 = 1 in (1)

3. (Independence) Most often the zi, and hence the pi, are
correlated. However even under correlation, Ŝ(z0) is still an
unbiased estimator for S(z0), making F̂dr(z0) nearly unbiased for
Fdr(z0).
− There is a price to be paid for correlation, which increases the

variance of Ŝ(z0) and F̂dr(z0)

4. (Rejecting one test depending on others) In the Bayes two-group
model, the number of null cases zi exceeding some threshold z0
has fixed expectation Nπ0S0(z0). So an increase in the number of
zi exceeding z0 must come from a heavier right tail for f1(z),
implying a greater posterior probability of non-nullness Fdr(z0).
− This emphasizes the “learning from the experience of others”

aspect of empirical Bayes inference
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Local false discovery rates
• Having observed test statistic zi equal to some value z0, we

should be more interested in the probability of nullness given
zi = z0 than zi ≥ z0

• Local false discovery rate

fdr(z0) = P (case i is null | zi = z0)

= π0f0(z0)
f(z0)

• After drawing a smooth curve f̂(z) through the histogram of the
z-values, we get the estimate

f̂dr(z0) = π0f0(z0)
f̂(z0)

− the null proportion π0 can either be estimated or set equal to 1
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A fourth-degree log polynomial Poisson regression fit to
the histogram, on the prostate data

• Solid line is the local f̂dr(z) and dashed lines are tail-area F̂dr(z)

• 27 genes on the right and 25 one the left have f̂dr(zi) ≤ 0.2
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The default cutoff for local fdr
• The cutoff f̂dr(zi) ≤ 0.2 is equivalent to

f1(z)
f0(z) ≥ 4π0

π1

• Assuming π0 ≥ 0.9, this makes the factor factor quite large

f1(z)
f0(z) ≥ 36

This is “strong evidence” against the null hypothesis in Jeffrey’s
scale of evidence for the interpretation of Bayes factors
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Relation between the local and tail-area fdr’s

• Since
Fdr(z0) = E (fdr(z) | z ≥ z0)

Therefore
Fdr(z0) < fdr(z0)

• Thus, the conventional significant cutoffs are

F̂dr(z) ≤ 0.1

f̂dr(z) ≤ 0.2
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Empirical null
• Large scale applications may allow us to empirically determine a

more realistic null distribution than H0i : zi ∼ N(0, 1)

• In the police data, a N(0, 1) curve is too narrow for the null.
Actually, an MLE fit to central data gives N(0.10, 1.402) as the
empirical null
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Empirical null estimation

• The theoretical null zi ∼ N(0, 1) is not completely wrong, but
needs adjustment for the dataset at hand

• Under the two-group model, with f0(z) normal but not necessarily
standard normal

f0(z) ∼ N(δ0, σ
2
0),

to compute the local fdr(z) = π0f0(z)/f(z), we need to estimate
three parameters (δ0, σ0, π0)

• Our key assumption is that π0 is large, say π0 ≥ 0.9, and most of
the zi near 0 are null.

• The algorithm locfdr begins by selecting a set A0 near z = 0 and
assumes that all the zi in A0 are null

• Maximum likelihood based on the numbers and values of zi in A0
yield the empirical null estimates (δ̂0, σ̂0, π̂0)
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• Links to the prostate data

− The 6033× 102 data matrix: prostmat.csv
− The 6033 z-values: prostz.txt

• A list of FDR methods in R:
http://www.strimmerlab.org/notes/fdr.html
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