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Notations: in binary classification

• We are interested in fitting a model q(x) for the true conditional
class 1 probability

η(x) = P (Y = 1 | X = x)

• Two types of problems

− Classification: estimating a region of the form {η(x) > c}
− Class probability estimation: approximate η(x), by fitting a model

q(x, β), where β are parameters to be estimated

• Surrogate criteria for estimation, e.g.,

− Log-loss: L(y | q) = −y log(q)− (1− y) log(1− q)
− Squared error loss: L(y | q) = (y − q)2 = y(1− q)2 + (1− y)q2

• Surrogate criteria of classification are exactly the primary criteria
of class probability estimation
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Proper scoring rule
• Fitting a binary model is to minimize a loss function

L (q()) = 1
N

N∑
n=1

L(yn | qn)

• In game theory, the agent’s goal is to maximize expected score (or
minimize expected loss)

− A scoring rule is proper if truthfulness maximizes expected score
− It is strictly proper if truthfulness uniquely maximizes expected

score

• In the context of binary response data, Fisher consistency holds
pointwise if

arg min
q∈[0,1]

EY∼Bernoulli(η)L(Y | q) = η, ∀η ∈ [0, 1]

• Fisher consistency is the defining property of proper scoring rules
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Bernoulli related simplification on the scoring rules

• Because Y takes only two values, 0 and 1, L(y | q) consists only
two "partial losses", L(1 | q) and L(0 | q)

• For simplicity, we prefer to express both in term of increasing
functions

L1(1− q) = L(1 | q), L0(q) = L(0 | q)

• Pointwise expected loss is defined as

R(η | q) = EY L(Y | q) = ηL1(1− q) + (1− η)L0(q)

• Fisher consistency becomes

arg min
q
R(η | q) = η
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Visualization of two proper scoring rules

• Left: log-loss, or Beta loss with α = β = 0

• Right: Beta loss with α = 1, β = 3
− Tailored for classification with false positive cost c = α

α+β = 0.25
and false negative cost 1− c = 0.75
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How to check property of a scoring rule for binary
response data
• Suppose the partial losses L1(1− q), L0(q) are smooth, then the

proper scoring rule property implies

0 = ∂

∂q

∣∣∣∣
q=η

R(η | q)

= −ηL′1(1− η) + (1− η)L′0(η)

• Therefore, a scoring rule is proper if

ηL′1(1− η) = (1− η)L′0(η)

• A scoring rule is strictly proper if

∂2

∂q2

∣∣∣∣∣
q=η

R(η | q) > 0
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Log-loss

• Log-loss is the negative log likelihood of the Bernoulli distribution

L = 1
N

N∑
n=1

[−yn log(qn)− (1− yn) log(1− qn)]

• Partial losses for log-loss

L1(1− q) = − log(q), L0(q) = − log(1− q)

• Expected loss for log-loss

R(η | q) = −η log(q)− (1− η) log(1− q)

• Log-loss is a strictly proper scoring rule
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Squared error loss

• Squared error loss is also known as Brier score

L = 1
N

N∑
n=1

[
yn(1− qn)2 − (1− yn)q2

n

]

• Partial losses for squared error loss

L1(1− q) = (1− q)2, L0(q) = q2

• Expected loss for squared error loss

R(η | q) = η(1− q)2 + (1− η)q2

• Squared error loss is a strictly proper scoring rule
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Misclassification loss

• Usually, misclassification loss uses c = 0.5 as the cutoff

L = 1
N

N∑
n=1

[
yn1{qn≤0.5} + (1− yn)1{qn>0.5}

]

• Partial losses for misclassification loss

L1(1− q) = 1{qn≤0.5}, L0(q) = 1{qn>0.5}

• Expected loss for misclassification loss

R(η | q) = η1{q≤0.5} + (1− η)1{q>0.5}

• Since any q > 0.5 for events and any q ≤ 0.5 for non-events
minimize the misclassification loss, misclassification loss is a
proper score rule, but it is not strictly proper
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A counter-example of proper scoring rule: absolute loss

• Because y ∈ {0, 1}, the absolute deviation L(y | q) = |y − q|
becomes

L(y | q) = y(1− q) + (1− y)q
R(η | q) = η(1− q) + (1− η)q

• Absolute deviation is not a proper scoring rule, because R(η | q)
is minimized by q = 1 for η > 1/2, and q = 0 for η < 1/2
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Structure of proper scoring rules
• Theorem: Let ω(dt) be a positive measure on (0, 1) that is finite

on intervals (ε, 1− ε),∀ε > 0. Then the following defines a proper
scoring rule:

L1(1− q) =
∫ f1

q
(1− t)ω(dt), L0(q) =

∫ q

f0
tω(dt)

• The proper scoring rule is strict iff ω(dt) has non-zero mass on
every open interval of (0, 1)

• The fixed limits f0 ≥ 0 and f1 ≤ 1 are somewhat arbitrary

• Note that for log-loss, L1(1− q) is unbounded (goes to infinity)
below near q = 1, and L0(q) is unbounded below near q = 0

• Except for log-loss, all other common proper scoring rules seem
to satisfy ∫ 1

0
t(1− t)ω(dt) <∞
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Connection between the false positive (FP) / false
negative (FN) costs and the classification cutoff

• Suppose the costs of FP and FN sum up to 1:

− FP: has a cost c, and expected cost cP (Y = 0) = c(1− η)
− FN: has a cost 1− c, and expected cost (1− c)P (Y = 1) = (1− c)η

• The optimal classification is therefore class 1 iff

(1− c)η ≥ c(1− η)⇐⇒ η ≥ c

− Since we don’t know the truth η, we classify as class 1 when q ≥ c

• Therefore, the classification cutoff equals

cost of FP
cost of FP + cost of FN

− Standard classification assumes costs of FP and FN are the same,
so the classification cutoff is 0.5
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Cost-weighted misclassification errors
• Cost-weighted misclassification errors:

Lc(y | q) = y(1− c) · 1{q≤c} + (1− y)c · 1{q>c}
L1,c(1− q) = (1− c) · 1{q≤c}, L0,c(q) = c · 1{q>c}

• Shuford-Albert-Massengil-Savage-Schervish theorem: an
intergral representation of proper scoring rules

L(y | q) =
∫ 1

0
Lc(y | q)ω(dc) =

∫ 1

0
Lc(y | q)ω(c)dc

− The second equality holds if w(dc) is absolutely continuous wrt
Lebesgue measure

− This can be used to tailor losses to specific classification problems
with cutoffs other than 1/2 of η(x), by designing suitable weight
functions ω()

• The paper proposes to use Iterative Reweighted Least Squares
(IRLS) to fit linear models with proper scoring rules
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Beta family of proper scoring rules
• This paper introduced a flexible 2-parameter family of proper

scoring rules

ω(t) = tα−1(1− t)β−1, where α > −1, β > −1

• Loss function of the Beta family proper scoring rules

L(y | q) = y

∫ 1

q
tα−1(1− t)βdt+ (1− y)

∫ q

0
tα(1− t)β−1dt

= yB(α, β + 1) [1− Iq(α, β + 1)]
+ (1− y)B(α+ 1, β)Iq(α+ 1, β)

− See the definitions of B(a, b) and Ix(a, b) in the next page

• Log-loss and squared error loss are special cases

− Log-loss: α = β = 0
− Squared error loss: α = β = 1
− Misclassification loss: α = β →∞
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Special functions and Python / R implementations

• Beta function

B(a, b) =
∫ 1

0
ta−1(1− t)b−1dt

− Python implementation: scipy.special.beta(a,b)
− R implementation: beta(a, b)

• Incomplete Beta function

Ix(a, b) = 1
B(a, b)

∫ x

0
ta−1(1− t)b−1dt

− Python implementation: scipy.special.betainc(a, b, x)
− R implementation: pbeta(x, a, b)
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https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.betainc.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/Beta.html


Tailor proper scoring rules for cost-weighted
misclassification

• We can use α 6= β when FP and FN costs are not viewed equal

• Since Beta family proper scoring rule is like adding a Beta
distribution on the FP cost c, we can use mean/variance matching
to elicit α and β

µ = α

α+ β
= c

σ2 = αβ

(α+ β)2(α+ β + 1) = c(1− c)
α+ β + 1

• Alternatively, we can match the mode

c = qmode = α− 1
α+ β − 2
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A simulation example
• In the simulation data with bivariate x, where decision boundaries

of different η are not in parallel (grey lines)

• The logit link Beta family linear model with α = 6, β = 14
estimates the c = 0.3 classification boundary better than the
logistic regression
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On the Pima Indians diabetes data
• Comparing logistic regression with a proper scoring rule tailored

for high class 1 probabilities: α = 9, β = 1.

• Black lines: empirical QQ curves of 200 cost-weighted
misclassification costs computed on randomly selected test sets
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