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ARMA (p, ¢q) process: definitions

+ {X;} isan ARMA(p, q) process if it is stationary, and for all ¢,

Xe—01 X4 1 — = 0pXs p=Zi + 024 1+ + 0,2
where {Z;} ~ WN(0, ¢?) and the polynomials

d(z)=1—prz—--—¢p2f, O(z)=1+b1z+ -+ 6,27

have no common factors
+ Equivalent formula using the backward shift operator

o(B) Xt = 0(B)Z
* An ARMA(p, q) process with mean p: we can study {X; — u}

(Xe—=p) =1 (X1 —p) == p(Xt—p—p1) = Zt+01 211+ - - +04 71—



Stationary solution: existence and uniqueness

+ A stationary solution exists and is unique if and only if
#(z) #0, forall complex z with |z| =1
+ The unit circle: the region in z € C defined by |z| =1

+ Stationary solution:

Xy =0(B)/d(B)Z, = ¢(B)Z; = i ViZi—j

j=—o0



Causality: ¢(z) has no zeros inside the unit circle

« An ARMA(p, q) process is causal: if there exist v, ¢1, . . .

o0
> |¥j] < oo, and
=0

o0
Xi=> ¥;Z_y, forallt
=0

+ Theorem (equivalent condition of causaility):
d(z)=1—p1z—---—¢p2l #0, forall|z| <1
« Example: ARMA(1,1) X; — ¢ X1 =Zi + 02,1
1—¢z=0= onlyzeroz=1/¢

So |z| =1/|¢| > 1,i.e., |¢| < 1is equivalent of causality



How do we get v/;’s?

« Letting 6 = 1 and matching coefficients of 27 based on

1+,912+...ng‘1:(1_¢1Z_...¢pzl’)(¢0+¢1z+...

gives
p
01 = — > brtbjok, J=0,1,...
j=1

+ Example: causal ARMA(1,1)

1 =1
0 =1 — o = Y1 =0+
0=1pj — i1 forj>2= ;= dhj

Therefore, _
Yo=1, ¢j=¢ 1O+yp)forj>1



Invertibility: 0(z) has no zeros inside the unit circle

+ An ARMA(p, q) process is invertible: if there exist mg, 1, . ..

oo
Z |Tj| < oo, and

=0

o0
Zy =Y miX;—j, forallt
=0

+ Theorem (equivalent condition of invertibility):
O(z) =1+b1z+---+6,294#0, forall|z| <1
« Example: ARMA(1,1) X; — ¢ X1 =Zi + 02,1
14+6z=0= only zero z = —1/0

So |z] =1/]0| > 1, i.e., |#] < 1is equivalent of invertibility



How do we get 7;’s?
« Letting ¢9 = —1 and matching coefficients of 2/ based on
1—rz— - ppP = (14124027 (10 +mz+ ),
gives

q
—@jljj<p = T + Zekﬂjflm j=0,1,...
=1

+ Example: invertible ARMA(1, 1)

1=mg
—p=m + 0y =11 =—(p+0)
0= Uy +97Tj_1 fOI’j > 2= T = —97Tj_1
Therefore,

mo=1, m = (=1)¢"""(¢+0)forj >1



Calculation of the ACVF

+ Assume the ARMA(p, q) process { X;} is causal and invertible
* Method 1: If X; = 3772, ¢;Z;—, then

v(h) = BE(XpinEr) = 0% i
=0

+ Method 2 (difference equation method): multiple the ARMA
formula with X, X;_4,... and take expectation



Example: ARMA(1, 1)
* Recall that for a causal ARMA(1, 1), in X; = Z;’io Vi Zy—j,

Yo=1, thj=¢ O +p)forj>1

+ Lag-0 autocorrelation

— 200 2 _ 2

1+(9+¢)2§:¢2j] _ 2 [1+(9+¢)2

J=0

+ Lag-1 autocorrelation

v(1) =0? Y Wb = o

=0

0+¢+

(6 + ¢>2¢]
1— ¢?

+ Lag-k autocorrelation (k > 2)

v(k) =" y(1), k>2



Use the difference equation method on ARMA(1,1)
1. Multiple Xy — ¢ Xy 1 = Z; + 07, 1 by X;, then take expectation
B(X?) - ¢B(X:Xi—1) = E(X:Zt) + 0E(X, Zy1)
Since E(X;Zy) = E[(X 320 ¥ Zi—j) Zk] = Yy—ro”, we have
7(0) — ¢7(1) = 0> + 6(8 + ¢)o”
2. Multiply by X;_;
E(X; 1Xy) — ¢BE(X} ) = B(Xt1Z) + 0E(X; 17 1)
(1) = ¢7(0) = 0+ o = b0
Using the two equations from 1 and 2, we can solve ~(0), (1)
3. Multiply by X; , for k > 2
E(X;_xXy) — B (Xp—1 X1—1) = E(Xy_1Z)) + 0E(Xy_xZy—1)
(k) = ov(k = 1) =0 = (k) = ¢y(k — 1)



ACF of an MA(q) process

+ Suppose {X;} is an MA(q), then p(h) =0forall h > ¢
+ By asymptotic normality

n

plg+1)~N (07 wq+1,q+1>

and Bartlett



Test for an MA(¢): from the ACF

1. Hypotheses
HO : {Xt} ~ MA((]) — Hy Not Ho

2. Test statistic .
plg+1)—0

[1423 7% p(5)?

* Note: under the null hypothesis, we use the sample ACF plot with

bounds +1.96 x M to check if p(h) forall h > ¢+ 1
are inside the bounds. But this may have some multiple testing
problems.

7 =

3. Reject Hy if [Z] > 2,5



Partial autocorrelation function (PACF)

+ We define the partial autocorrelation function (PACF) of an ARMA
process as the function «f(-)

a(0) =1, a(h)=¢pp, forh =1
Here, ¢y, is the last entry of
¢h = I‘}TIFYh? where Fh = ['7(2 - j)]?,j:la Th = [7(1)a s 77(h)]/

« Sample PACF &(-): change all ~(-) above to 4(-)
« Recall: in DL algorithm X, 11 = ¢p1 Xn + - - - + Gnn X1,

¢nn = a(n), PACF atlagn



PACF property

* ¢nn is the correlation between the prediction errors

a(n) = Corr (Xn — P(Xn|X1, . ,Xn_l),Xo — P(X0|X1, .

+ Theorem: A stationary series is AR(p) if and only if
a(h) =0forallh > p

+ If {X;} is an AR(p), then we have asymptotic normality

. 1
a(h) NN(O, n), forall h > p

oy Xn-1))



Test for an AR(p): from the PACF

1. Hypotheses
Hy:{X:} ~AR(p) <«— Hyz:NotH,

2. Test statistic R
_ap+1)-0

7 =
\ﬁ
3. Reject Hy if |Z| > Zau)2
* Note: under the null hypothesis, we use the sample PACF plot

with bounds +1.96//n to check if &(h) for all h > p + 1 are inside
the bounds. But this may have some multiple testing problems.



Forecast ARMA(p, ¢) using the innovation algorithm

* Let m = max(p, q)
+ One-step prediction

X B Z?:l an (Xn+1fj — Xn+1fj) , n<<m
n+l — A
D1 PiXnt1—i + X0 Onj (Xn+1—j - Xn+1—j) , n>m

— Special case: AR(p) process
n+1 Z ¢an+1 75 n Z p

* h-step prediction: forn > mand all h > 1,

p q
Py X p = Z GiPnXpini+ Z Onth—1,j (Xn+1—j - Xn+1—j)
i=1 j=h



Innovation algorithm parameters vs MA parameters

+ Innovation algorithm parameters converges to the MA parameters:
If {X;} is invertible, then as n — oo,

Onj — 0, 7=12,...,q
« Prediction MSE converges to ¢2: Let
vp = E(Xpq1 — Xn+1)2, and v,, = r,,0°
If {X;} is invertible, then as n — oo,

ry — 1
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