Notes: Intro to Time Series and Forecasting – Ch3 ARMA Models

Yingbo Li

05/05/2019

1

Table of Contents

ARMA(p,q) Processes

Stationary solution

Causality

Invertibility

ACF and PACF of an ARMA(p,q) Process

Calculation of the ACVF

Test for MAs and ARs from the ACF and PACF

Forecast ARMA Processes

ARMA(p,q) process: definitions

• $\{X_t\}$ is an ARMA(p,q) process if it is **stationary**, and for all t,

$$X_t - \phi_1 X_{t-1} - \dots - \phi_p X_{t-p} = Z_t + \theta_1 Z_{t-1} + \dots + \theta_q Z_{t-q}$$

where $\{Z_t\} \sim WN(0, \sigma^2)$ and the polynomials

$$\phi(z) = 1 - \phi_1 z - \dots - \phi_p z^p, \quad \theta(z) = 1 + \theta_1 z + \dots + \theta_q z^q$$

have no common factors

· Equivalent formula using the backward shift operator

$$\phi(B)X_t = \theta(B)Z_t$$

• An ARMA(p,q) process with mean μ : we can study $\{X_t - \mu\}$

$$(X_{t}-\mu)-\phi_{1}(X_{t-1}-\mu)-\cdots-\phi_{p}(X_{t-p}-\mu)=Z_{t}+\theta_{1}Z_{t-1}+\cdots+\theta_{q}Z_{t-q}$$

Stationary solution: existence and uniqueness

· A stationary solution exists and is unique if and only if

$$\phi(z) \neq 0$$
, for all complex z with $|z| = 1$

- The unit circle: the region in $z \in \mathbb{C}$ defined by |z| = 1
- · Stationary solution:

$$X_t = \theta(B)/\phi(B)Z_t = \psi(B)Z_t = \sum_{j=-\infty}^{\infty} \psi_j Z_{t-j}$$

4

Causality: $\phi(z)$ has no zeros inside the unit circle

• An ARMA(p,q) process is causal: if there exist ψ_0,ψ_1,\ldots

$$\sum_{j=0}^{\infty} |\psi_j| < \infty, \quad \text{and} \quad$$

$$X_t = \sum_{j=0}^{\infty} \psi_j Z_{t-j}, \quad \text{for all } t$$

· Theorem (equivalent condition of causaility):

$$\phi(z) = 1 - \phi_1 z - \dots - \phi_p z^p \neq 0$$
, for all $|z| \leq 1$

• Example: ARMA(1,1) $X_t - \phi X_{t-1} = Z_t + \theta Z_{t-1}$

$$1 - \phi z = 0 \Longrightarrow \text{ only zero } z = 1/\phi$$

So $|z| = 1/|\phi| > 1$, i.e., $|\phi| < 1$ is equivalent of causality

How do we get ψ_i 's?

• Letting $\theta_0=1$ and matching coefficients of z^j based on

$$1 + \theta_1 z + \cdots + \theta_q z^q = (1 - \phi_1 z - \cdots + \phi_p z^p)(\psi_0 + \psi_1 z + \cdots),$$

gives

$$\theta_j \mathbf{1}_{[j \le q]} = \psi_j - \sum_{j=1}^p \phi_k \psi_{j-k}, \quad j = 0, 1, \dots$$

• Example: causal ARMA(1,1)

$$\begin{split} 1 &= \psi_0 \\ \theta &= \psi_1 - \phi \psi_0 \Longrightarrow \psi_1 = \theta + \psi \\ 0 &= \psi_j - \phi \psi_{j-1} \text{ for } j \geq 2 \Longrightarrow \psi_j = \phi \psi_{j-1} \end{split}$$

Therefore,

$$\psi_0 = 1, \quad \psi_j = \phi^{j-1}(\theta + \psi) \text{ for } j \ge 1$$

Invertibility: $\theta(z)$ has no zeros inside the unit circle

• An ARMA(p,q) process is invertible: if there exist π_0,π_1,\ldots

$$\sum_{j=0}^{\infty}|\pi_j|<\infty,$$
 and

$$Z_t = \sum_{j=0}^{\infty} \pi_j X_{t-j}, \quad \text{for all } t$$

Theorem (equivalent condition of invertibility):

$$\theta(z) = 1 + \theta_1 z + \dots + \theta_q z^q \neq 0$$
, for all $|z| \leq 1$

• Example: ARMA(1,1) $X_t - \phi X_{t-1} = Z_t + \theta Z_{t-1}$

$$1 + \theta z = 0 \Longrightarrow \text{ only zero } z = -1/\theta$$

So $|z| = 1/|\theta| > 1$, i.e., $|\theta| < 1$ is equivalent of invertibility

How do we get π_i 's?

• Letting $\phi_0 = -1$ and matching coefficients of z^j based on

$$1 - \phi_1 z - \cdots + \phi_p z^p = (1 + \theta_1 z + \cdots + \theta_q z^q)(\pi_0 + \pi_1 z + \cdots),$$

gives

$$-\phi_j \mathbf{1}_{[j \le p]} = \pi_j + \sum_{j=1}^q \theta_k \pi_{j-k}, \quad j = 0, 1, \dots$$

• Example: invertible ARMA(1,1)

$$\begin{split} 1 &= \pi_0 \\ -\phi &= \pi_1 + \theta \psi_0 \Longrightarrow \pi_1 = -(\psi + \theta) \\ 0 &= \pi_j + \theta \pi_{j-1} \text{ for } j \geq 2 \Longrightarrow \pi_j = -\theta \pi_{j-1} \end{split}$$

Therefore,

$$\pi_0 = 1, \quad \pi_j = (-1)^j \theta^{j-1} (\psi + \theta) \text{ for } j \ge 1$$

Calculation of the ACVF

- Assume the ARMA(p,q) process $\{X_t\}$ is causal and invertible
- Method 1: If $X_t = \sum_{j=0}^{\infty} \psi_j Z_{t-j}$, then

$$\gamma(h) = E(X_{t+h}E_t) = \sigma^2 \sum_{j=0}^{\infty} \psi_j \psi_{j+|h|}$$

• Method 2 (difference equation method): multiple the ARMA formula with X_t, X_{t-1}, \ldots and take expectation

Example: ARMA(1, 1)

• Recall that for a causal ARMA(1,1), in $X_t = \sum_{j=0}^{\infty} \psi_j Z_{t-j}$,

$$\psi_0 = 1, \quad \psi_j = \phi^{j-1}(\theta + \psi) \text{ for } j \ge 1$$

· Lag-0 autocorrelation

$$\gamma(0) = \sigma^2 \sum_{j=0}^{\infty} \psi_j^2 = \sigma^2 \left[1 + (\theta + \phi)^2 \sum_{j=0}^{\infty} \phi^{2j} \right] = \sigma^2 \left[1 + \frac{(\theta + \phi)^2}{1 - \phi^2} \right]$$

· Lag-1 autocorrelation

$$\gamma(1) = \sigma^2 \sum_{j=0}^{\infty} \psi_j \psi_{j+1} = \sigma^2 \left[\theta + \phi + \frac{(\theta + \phi)^2 \phi}{1 - \phi^2} \right]$$

• Lag-k autocorrelation ($k \ge 2$)

$$\gamma(k) = \phi^{k-1}\gamma(1), \quad k \ge 2$$

Use the difference equation method on ARMA(1,1)

1. Multiple $X_t - \phi X_{t-1} = Z_t + \theta Z_{t-1}$ by X_t , then take expectation

$$E(X_t^2) - \phi E(X_t X_{t-1}) = E(X_t Z_t) + \theta E(X_t Z_{t-1})$$

Since $E(X_t Z_k) = E[(\sum_{j=0}^{\infty} \psi_j Z_{t-j}) Z_k] = \psi_{t-k} \sigma^2$, we have

$$\gamma(0) - \phi\gamma(1) = \sigma^2 + \theta(\theta + \phi)\sigma^2$$

2. Multiply by X_{t-1}

$$E(X_{t-1}X_t) - \phi E(X_{t-1}^2) = E(X_{t-1}Z_t) + \theta E(X_{t-1}Z_{t-1})$$
$$\gamma(1) - \phi \gamma(0) = 0 + \theta \sigma^2 \psi_0 = \theta \sigma^2$$

Using the two equations from 1 and 2, we can solve $\gamma(0), \gamma(1)$

3. Multiply by X_{t-k} , for $k \geq 2$

$$E(X_{t-k}X_t) - \phi E(X_{t-k}X_{t-1}) = E(X_{t-k}Z_t) + \theta E(X_{t-k}Z_{t-1})$$
$$\gamma(k) - \phi \gamma(k-1) = 0 \Longrightarrow \gamma(k) = \phi \gamma(k-1)$$

ACF of an MA(q) process

- Suppose $\{X_t\}$ is an MA(q), then $\rho(h)=0$ for all h>q
- By asymptotic normality

$$\hat{\rho}(q+1) \stackrel{.}{\sim} N\left(0, \frac{w_{q+1,q+1}}{n}\right)$$

and Bartlett

$$w_{q+1,q+1} = \sum_{k=1}^{\infty} \left[\rho(k+q+1) + \rho(k-q-1) - 2\rho(k+1)\rho(q) \right]^2$$
$$= \sum_{k=1}^{\infty} \rho(k-q-1)^2$$
$$= 1 + 2\sum_{j=1}^{q} \rho(j)^2$$

Test for an MA(q): from the ACF

1. Hypotheses

$$H_0: \{X_t\} \sim \mathrm{MA}(q) \longleftrightarrow H_A: \mathsf{Not}\ H_0$$

2. Test statistic

$$Z = \frac{\hat{\rho}(q+1) - 0}{\sqrt{\frac{1 + 2\sum_{j=1}^{q} \hat{\rho}(j)^{2}}{n}}}$$

- 3. Reject H_0 if $|Z| \geq z_{\alpha/2}$
 - Note: under the null hypothesis, we use the sample ACF plot with bounds $\pm 1.96 \times \sqrt{\frac{1+2\sum_{j=1}^q \hat{\rho}(j)^2}{n}}$ to check if $\hat{\rho}(h)$ for all $h \geq q+1$ are inside the bounds. But this may have some multiple testing problems.

Partial autocorrelation function (PACF)

• We define the partial autocorrelation function (PACF) of an ARMA process as the function $\alpha(\cdot)$

$$\alpha(0) = 1$$
, $\alpha(h) = \phi_{hh}$, for $h \ge 1$

Here, ϕ_{hh} is the last entry of

$$\phi_h = \Gamma_h^{-1} \gamma_h, \quad \text{where } \Gamma_h = [\gamma(i-j)]_{i,j=1}^h, \; \gamma_h = [\gamma(1), \dots, \gamma(h)]'$$

- Sample PACF $\hat{\alpha}(\cdot)$: change all $\gamma(\cdot)$ above to $\hat{\gamma}(\cdot)$
- Recall: in DL algorithm $\hat{X}_{n+1} = \phi_{n1}X_n + \cdots + \phi_{nn}X_1$,

$$\phi_{nn} = \alpha(n)$$
, PACF at lag n

PACF property

• ϕ_{nn} is the correlation between the prediction errors

$$\alpha(n) = \mathsf{Corr}\left(X_n - P(X_n | X_1, \dots, X_{n-1}), X_0 - P(X_0 | X_1, \dots, X_{n-1})\right)$$

Theorem: A stationary series is AR(p) if and only if

$$\alpha(h) = 0$$
 for all $h > p$

• If $\{X_t\}$ is an AR(p), then we have asymptotic normality

$$\hat{\alpha}(h) \stackrel{.}{\sim} \mathrm{N}\left(0, \frac{1}{n}\right), \quad \text{for all } h > p$$

Test for an AR(p): from the PACF

1. Hypotheses

$$H_0: \{X_t\} \sim AR(p) \longleftrightarrow H_A: \mathsf{Not}\ H_0$$

2. Test statistic

$$Z = \frac{\hat{\alpha}(p+1) - 0}{\sqrt{\frac{1}{n}}}$$

- 3. Reject H_0 if $|Z| \geq z_{\alpha/2}$
 - Note: under the null hypothesis, we use the sample PACF plot with bounds $\pm 1.96/\sqrt{n}$ to check if $\hat{\alpha}(h)$ for all $h \geq p+1$ are inside the bounds. But this may have some multiple testing problems.

Forecast ARMA(p,q) using the innovation algorithm

- Let $m = \max(p, q)$
- One-step prediction

$$\hat{X}_{n+1} = \begin{cases} \sum_{j=1}^{n} \theta_{nj} \left(X_{n+1-j} - \hat{X}_{n+1-j} \right), & n < m \\ \sum_{i=1}^{p} \phi_{i} X_{n+1-i} + \sum_{j=1}^{q} \theta_{nj} \left(X_{n+1-j} - \hat{X}_{n+1-j} \right), & n \ge m \end{cases}$$

Special case: AR(p) process

$$\hat{X}_{n+1} = \sum_{i=1}^{p} \phi_k X_{n+1-i}, \quad n \ge p$$

• h-step prediction: for n > m and all $h \ge 1$,

$$P_n X_{n+h} = \sum_{i=1}^{p} \phi_i P_n X_{n+h-i} + \sum_{j=h}^{q} \theta_{n+h-1,j} \left(X_{n+1-j} - \hat{X}_{n+1-j} \right)$$

Innovation algorithm parameters vs MA parameters

• Innovation algorithm parameters converges to the MA parameters: If $\{X_t\}$ is invertible, then as $n \to \infty$,

$$\theta_{nj} \longrightarrow \theta_j, \quad j = 1, 2, \dots, q$$

• Prediction MSE converges to σ^2 : Let

$$v_n = E(X_{n+1} - \hat{X}_{n+1})^2$$
, and $v_n = r_n \sigma^2$

If $\{X_t\}$ is invertible, then as $n \to \infty$,

$$r_n \longrightarrow 1$$

References

 Brockwell, Peter J. and Davis, Richard A. (2016), Introduction to Time Series and Forecasting, Third Edition. New York: Springer