For the pdf slides, click here
ARMA\((p, q)\) Processes
ARMA\((p, q)\) process: definitions
\(\{X_t\}\) is an ARMA\((p, q)\) process if it is stationary, and for all \(t\), \[ X_t - \phi_1 X_{t-1} - \cdots - \phi_p X_{t-p} = Z_t + \theta_1 Z_{t-1} + \cdots + \theta_q Z_{t-q} \] where \(\{Z_t\} \sim \textrm{WN}(0, \sigma^2)\) and the polynomials \[ \phi(z) = 1 - \phi_1 z - \cdots - \phi_p z^p, \quad \theta(z) = 1 + \theta_1 z + \cdots + \theta_q z^q \] have no common factors
Equivalent formula using the backward shift operator \[ \phi(B) X_t = \theta(B) Z_t \]
An ARMA\((p,q)\) process with mean \(\mu\): we can study \(\{X_t - \mu\}\) \[ (X_t-\mu) - \phi_1 (X_{t-1}-\mu) - \cdots - \phi_p (X_{t-p}-\mu) = Z_t + \theta_1 Z_{t-1} + \cdots + \theta_q Z_{t-q} \]
Stationary solution
Stationary solution: existence and uniqueness
A stationary solution exists and is unique if and only if \[ \phi(z) \neq 0, \quad \text{for all complex } z \text{ with } |z| = 1 \]
The unit circle: the region in \(z \in \mathbb{C}\) defined by \(|z|=1\)
Stationary solution: \[ X_t = \theta(B) / \phi(B) Z_t = \psi(B) Z_t = \sum_{j=-\infty}^{\infty} \psi_j Z_{t-j} \]
Causality
Causality: \(\phi(z)\) has no zeros inside the unit circle
An ARMA\((p, q)\) process is causal: if there exist \(\psi_0, \psi_1, \ldots\) \[ \sum_{j=0}^{\infty} |\psi_j| < \infty, \quad \text{and} \] \[ X_t = \sum_{j=0}^{\infty}\psi_j Z_{t-j}, \quad \text{for all } t \]
Theorem (equivalent condition of causaility): \[ \phi(z) = 1 - \phi_1 z - \cdots - \phi_p z^p \neq 0, \quad \text{for all } |z| \leq 1 \]
Example: ARMA\((1, 1)\) \(X_t - \phi X_{t-1} = Z_t + \theta Z_{t-1}\) \[ 1-\phi z = 0 \Longrightarrow \text{ only zero } z = 1/\phi \] So \(|z| = 1/|\phi| > 1\), i.e., \(|\phi| < 1\) is equivalent of causality
How do we get \(\psi_j\)’s?
Letting \(\theta_0 = 1\) and matching coefficients of \(z^j\) based on \[ 1 + \theta_1 z + \cdots \theta_q z^q = (1 - \phi_1 z - \cdots \phi_p z^p)(\psi_0 + \psi_1 z + \cdots), \] gives \[ \theta_j \mathbf{1}_{[j \leq q]} = \psi_j - \sum_{j=1}^p \phi_k \psi_{j-k}, \quad j = 0, 1, \ldots \]
Example: causal ARMA\((1, 1)\)
\[\begin{align*} 1 & = \psi_0\\ \theta & = \psi_1 - \phi \psi_0 \Longrightarrow \psi_1 = \theta + \psi\\ 0 & = \psi_j - \phi \psi_{j-1} \text{ for } j \geq 2 \Longrightarrow \psi_j = \phi \psi_{j-1} \end{align*}\]
Therefore, \[ \psi_0 = 1, \quad \psi_j = \phi^{j-1}(\theta + \psi) \text{ for } j \geq 1 \]
Invertibility
Invertibility: \(\theta(z)\) has no zeros inside the unit circle
An ARMA\((p, q)\) process is invertible: if there exist \(\pi_0, \pi_1, \ldots\) \[ \sum_{j=0}^{\infty} |\pi_j| < \infty, \quad \text{and} \] \[ Z_t = \sum_{j=0}^{\infty}\pi_j X_{t-j}, \quad \text{for all } t \]
Theorem (equivalent condition of invertibility): \[ \theta(z) = 1 + \theta_1 z + \cdots + \theta_q z^q \neq 0, \quad \text{for all } |z| \leq 1 \]
Example: ARMA\((1, 1)\) \(X_t - \phi X_{t-1} = Z_t + \theta Z_{t-1}\) \[ 1 + \theta z = 0 \Longrightarrow \text{ only zero } z = -1/\theta \] So \(|z| = 1/|\theta| > 1\), i.e., \(|\theta| < 1\) is equivalent of invertibility
How do we get \(\pi_j\)’s?
Letting \(\phi_0 = -1\) and matching coefficients of \(z^j\) based on \[ 1 - \phi_1 z - \cdots \phi_p z^p = (1 + \theta_1 z + \cdots \theta_q z^q)(\pi_0 + \pi_1 z + \cdots), \] gives \[ -\phi_j \mathbf{1}_{[j \leq p]} = \pi_j + \sum_{j=1}^q \theta_k \pi_{j-k}, \quad j = 0, 1, \ldots \]
Example: invertible ARMA\((1, 1)\)
\[\begin{align*} 1 & = \pi_0\\ -\phi & = \pi_1 + \theta \psi_0 \Longrightarrow \pi_1 = -(\psi +\theta)\\ 0 & = \pi_j + \theta \pi_{j-1} \text{ for } j \geq 2 \Longrightarrow \pi_j = -\theta \pi_{j-1} \end{align*}\]
Therefore, \[ \pi_0 = 1, \quad \pi_j = (-1)^j \theta^{j-1}(\psi + \theta) \text{ for } j \geq 1 \]
ACF and PACF of an ARMA\((p, q)\) Process
Calculation of the ACVF
Calculation of the ACVF
Assume the ARMA\((p, q)\) process \(\{X_t\}\) is causal and invertible
Method 1: If \(X_t = \sum_{j=0}^{\infty} \psi_j Z_{t-j}\), then \[ \gamma(h) = E(X_{t+h} E_t) = \sigma^2 \sum_{j=0}^{\infty} \psi_j \psi_{j + |h|} \]
Method 2 (difference equation method): multiple the ARMA formula with \(X_t, X_{t-1}, \ldots\) and take expectation
Example: ARMA\((1, 1)\)
Recall that for a causal ARMA\((1, 1)\), in \(X_t = \sum_{j=0}^{\infty} \psi_j Z_{t-j}\), \[ \psi_0 = 1, \quad \psi_j = \phi^{j-1}(\theta + \psi) \text{ for } j \geq 1 \]
Lag-0 autocorrelation \[ \gamma(0) = \sigma^2 \sum_{j=0}^{\infty} \psi_j^2 = \sigma^2\left[ 1 + (\theta+\phi)^2 \sum_{j=0}^{\infty}\phi^{2j}\right] = \sigma^2\left[ 1 + \frac{(\theta+\phi)^2}{1-\phi^2} \right] \]
Lag-1 autocorrelation \[ \gamma(1) = \sigma^2 \sum_{j=0}^{\infty} \psi_j \psi_{j+1} % = \sigma^2\left[ \theta+\phi + (\theta+\phi)^2\phi % \sum_{j=0}^{\infty}\phi^{2j}\right] = \sigma^2\left[ \theta+\phi + \frac{(\theta+\phi)^2 \phi}{1-\phi^2} \right] \]
Lag-\(k\) autocorrelation (\(k \geq 2\)) \[ \gamma(k) = \phi^{k-1} \gamma(1), \quad k \geq 2 \]
Use the difference equation method on ARMA\((1, 1)\)
Multiple \(X_t - \phi X_{t-1} = Z_t + \theta Z_{t-1}\) by \(X_t\), then take expectation \[ E(X_t^2) - \phi E(X_t X_{t-1}) = E(X_t Z_t) + \theta E(X_t Z_{t-1}) \] Since \(E(X_t Z_k) = E[(\sum_{j=0}^{\infty} \psi_j Z_{t-j})Z_k] = \psi_{t-k} \sigma^2\), we have \[ \gamma(0) - \phi \gamma(1) = \sigma^2 + \theta (\theta + \phi) \sigma^2 \]
Multiply by \(X_{t-1}\) \[ E(X_{t-1} X_t) - \phi E(X_{t-1}^2) = E(X_{t-1} Z_t) + \theta E(X_{t-1} Z_{t-1}) \] \[ \gamma(1) - \phi \gamma(0) = 0 + \theta \sigma^2 \psi_0 = \theta \sigma^2 \]
Using the two equations from 1 and 2, we can solve \(\gamma(0), \gamma(1)\)
- Multiply by \(X_{t-k}\), for \(k \geq 2\) \[ E(X_{t-k} X_t) - \phi E(X_{t-k} X_{t-1}) = E(X_{t-k} Z_t) + \theta E(X_{t-k} Z_{t-1}) \] \[ \gamma(k) - \phi \gamma(k-1) = 0 \Longrightarrow \gamma(k) = \phi \gamma(k-1) \]
Test for MAs and ARs from the ACF and PACF
ACF of an MA\((q)\) process
- Suppose \(\{X_t\}\) is an MA\((q)\), then \(\rho(h) = 0\) for all \(h > q\)
- By asymptotic normality \[ \hat{\rho}(q + 1) \stackrel{\cdot}{\sim} \textrm{N}\left(0, \frac{w_{q+1, q+1}}{n}\right) \] and Bartlett \[\begin{align*} w_{q+1, q+1} & = \sum_{k=1}^{\infty} \left[ \rho(k+q+1) + \rho(k-q-1) - 2 \rho(k+1) \rho(q) \right]^2 \\ & = \sum_{k=1}^{\infty}\rho(k-q-1)^2\\ & = 1 + 2 \sum_{j=1}^q \rho(j)^2 \end{align*}\]
Test for an MA\((q)\): from the ACF
Hypotheses \[ H_0: \{X_t\} \sim \textrm{MA}(q) \quad \longleftrightarrow \quad H_A: \text{Not } H_0 \]
Test statistic \[ Z = \frac{\hat{\rho}(q + 1) - 0}{\sqrt{\frac{1 + 2 \sum_{j=1}^q \hat{\rho}(j)^2}{n}}} \]
Reject \(H_0\) if \(|Z| \geq z_{\alpha/2}\)
- Note: under the null hypothesis, we use the sample ACF plot with bounds \(\pm 1.96 \times \sqrt{\frac{1 + 2 \sum_{j=1}^q \hat{\rho}(j)^2}{n}}\) to check if \(\hat{\rho}(h)\) for all \(h \geq q+1\) are inside the bounds. But this may have some multiple testing problems.
Partial autocorrelation function (PACF)
We define the partial autocorrelation function (PACF) of an ARMA process as the function \(\alpha(\cdot)\) \[ \alpha(0) = 1, \quad \alpha(h) = \phi_{hh}, \text{ for } h \geq 1 \] Here, \(\phi_{hh}\) is the last entry of \[ \boldsymbol\phi_h = \boldsymbol\Gamma_h^{-1} \boldsymbol\gamma_h, \quad \text{where } \boldsymbol\Gamma_h = [\gamma(i-j)]_{i,j=1}^h, \ \boldsymbol\gamma_h = [\gamma(1), \ldots, \gamma(h)]' \]
Sample PACF \(\hat{\alpha}(\cdot)\): change all \(\gamma(\cdot)\) above to \(\hat{\gamma}(\cdot)\)
Recall: in DL algorithm \(\hat{X}_{n+1} = \phi_{n1}X_n + \cdots + \phi_{nn} X_1\), \[ \phi_{nn} = \alpha(n), \quad \text{PACF at lag }n \]
PACF property
\(\phi_{nn}\) is the correlation between the prediction errors \[ \alpha(n) = \text{Corr} \left( X_n - P(X_n | X_1, \ldots, X_{n-1}), X_0 - P(X_0 | X_1, \ldots, X_{n-1})\right) \]
Theorem: A stationary series is AR\((p)\) if and only if \[ \alpha(h) = 0 \text{ for all } h > p \]
If \(\{X_t\}\) is an AR\((p)\), then we have asymptotic normality \[ \hat{\alpha}(h) \stackrel{\cdot}{\sim} \textrm{N}\left(0, \frac{1}{n}\right), \quad \text{for all } h > p \]
Test for an AR\((p)\): from the PACF
Hypotheses \[ H_0: \{X_t\} \sim \textrm{AR}(p) \quad \longleftrightarrow \quad H_A: \text{Not } H_0 \]
Test statistic \[ Z = \frac{\hat{\alpha}(p + 1) - 0}{\sqrt{\frac{1}{n}}} \]
Reject \(H_0\) if \(|Z| \geq z_{\alpha/2}\)
- Note: under the null hypothesis, we use the sample PACF plot with bounds \(\pm 1.96 / \sqrt{n}\) to check if \(\hat{\alpha}(h)\) for all \(h \geq p+1\) are inside the bounds. But this may have some multiple testing problems.
Forecast ARMA Processes
Forecast ARMA\((p, q)\) using the innovation algorithm
Let \(m = \max(p, q)\)
One-step prediction \[ \hat{X}_{n+1} = \begin{cases} \sum_{j=1}^n \theta_{nj}\left( X_{n+1-j} - \hat{X}_{n+1-j} \right), & n < m\\ \sum_{i=1}^p \phi_i X_{n+1-i} + \sum_{j=1}^q \theta_{nj}\left( X_{n+1-j} - \hat{X}_{n+1-j} \right), & n \geq m\\ \end{cases} \]
- Special case: AR\((p)\) process \[ \hat{X}_{n+1} = \sum_{i=1}^p \phi_k X_{n+1-i}, \quad n\geq p \]
\(h\)-step prediction: for \(n>m\) and all \(h \geq 1\), \[ P_n X_{n+h} = \sum_{i=1}^p \phi_i P_n X_{n+h-i} + \sum_{j=h}^q \theta_{n+h-1,j}\left( X_{n+1-j} - \hat{X}_{n+1-j} \right) \]
Innovation algorithm parameters vs MA parameters
Innovation algorithm parameters converges to the MA parameters: If \(\{X_t\}\) is invertible, then as \(n\rightarrow \infty\), \[ \theta_{nj} \longrightarrow \theta_j, \quad j = 1, 2, \ldots, q \]
Prediction MSE converges to \(\sigma^2\): Let \[ v_n = E(X_{n+1} - \hat{X}_{n+1})^2, \quad \text{and } v_n = r_n \sigma^2 \] If \(\{X_t\}\) is invertible, then as \(n\rightarrow \infty\), \[ r_n \longrightarrow 1 \]
References
- Brockwell, Peter J. and Davis, Richard A. (2016), Introduction to Time Series and Forecasting, Third Edition. New York: Springer