For the pdf slides, click here
ARMA(p,q) Processes
ARMA(p,q) process: definitions
{Xt} is an ARMA(p,q) process if it is stationary,
and for all t,
Xt−ϕ1Xt−1−⋯−ϕpXt−p=Zt+θ1Zt−1+⋯+θqZt−q
where {Zt}∼WN(0,σ2) and the polynomials
ϕ(z)=1−ϕ1z−⋯−ϕpzp,θ(z)=1+θ1z+⋯+θqzq
have no common factors
Equivalent formula using the backward shift operator
ϕ(B)Xt=θ(B)Zt
An ARMA(p,q) process with mean μ: we can study {Xt−μ}
(Xt−μ)−ϕ1(Xt−1−μ)−⋯−ϕp(Xt−p−μ)=Zt+θ1Zt−1+⋯+θqZt−q
Stationary solution
Stationary solution: existence and uniqueness
A stationary solution exists and is unique if and only if
ϕ(z)≠0,for all complex z with |z|=1
The unit circle: the region in z∈C defined by
|z|=1
Stationary solution:
Xt=θ(B)/ϕ(B)Zt=ψ(B)Zt=∞∑j=−∞ψjZt−j
Causality
Causality: ϕ(z) has no zeros inside the unit circle
An ARMA(p,q) process is causal: if there exist ψ0,ψ1,…
∞∑j=0|ψj|<∞,and
Xt=∞∑j=0ψjZt−j,for all t
Theorem (equivalent condition of causaility):
ϕ(z)=1−ϕ1z−⋯−ϕpzp≠0,for all |z|≤1
Example: ARMA(1,1) Xt−ϕXt−1=Zt+θZt−1
1−ϕz=0⟹ only zero z=1/ϕ
So |z|=1/|ϕ|>1, i.e., |ϕ|<1 is equivalent of causality
How do we get ψj’s?
Letting θ0=1 and matching coefficients of zj based on
1+θ1z+⋯θqzq=(1−ϕ1z−⋯ϕpzp)(ψ0+ψ1z+⋯),
gives
θj1[j≤q]=ψj−p∑j=1ϕkψj−k,j=0,1,…
Example: causal ARMA(1,1)
1=ψ0θ=ψ1−ϕψ0⟹ψ1=θ+ψ0=ψj−ϕψj−1 for j≥2⟹ψj=ϕψj−1
Therefore,
ψ0=1,ψj=ϕj−1(θ+ψ) for j≥1
Invertibility
Invertibility: θ(z) has no zeros inside the unit circle
An ARMA(p,q) process is invertible: if there exist
π0,π1,…
∞∑j=0|πj|<∞,and
Zt=∞∑j=0πjXt−j,for all t
Theorem (equivalent condition of invertibility):
θ(z)=1+θ1z+⋯+θqzq≠0,for all |z|≤1
Example: ARMA(1,1) Xt−ϕXt−1=Zt+θZt−1
1+θz=0⟹ only zero z=−1/θ
So |z|=1/|θ|>1, i.e., |θ|<1 is equivalent of invertibility
How do we get πj’s?
Letting ϕ0=−1 and matching coefficients of zj based on
1−ϕ1z−⋯ϕpzp=(1+θ1z+⋯θqzq)(π0+π1z+⋯),
gives
−ϕj1[j≤p]=πj+q∑j=1θkπj−k,j=0,1,…
Example: invertible ARMA(1,1)
1=π0−ϕ=π1+θψ0⟹π1=−(ψ+θ)0=πj+θπj−1 for j≥2⟹πj=−θπj−1
Therefore,
π0=1,πj=(−1)jθj−1(ψ+θ) for j≥1
ACF and PACF of an ARMA(p,q) Process
Calculation of the ACVF
Calculation of the ACVF
Assume the ARMA(p,q) process {Xt} is causal and invertible
Method 1: If
Xt=∑∞j=0ψjZt−j, then
γ(h)=E(Xt+hEt)=σ2∞∑j=0ψjψj+|h|
Method 2 (difference equation method): multiple the ARMA formula with
Xt,Xt−1,… and take expectation
Example: ARMA(1,1)
Recall that for a causal ARMA(1,1), in Xt=∑∞j=0ψjZt−j,
ψ0=1,ψj=ϕj−1(θ+ψ) for j≥1
Lag-0 autocorrelation
γ(0)=σ2∞∑j=0ψ2j=σ2[1+(θ+ϕ)2∞∑j=0ϕ2j]=σ2[1+(θ+ϕ)21−ϕ2]
Lag-1 autocorrelation
γ(1)=σ2∞∑j=0ψjψj+1=σ2[θ+ϕ+(θ+ϕ)2ϕ1−ϕ2]
Lag-k autocorrelation (k≥2)
γ(k)=ϕk−1γ(1),k≥2
Use the difference equation method on ARMA(1,1)
Multiple Xt−ϕXt−1=Zt+θZt−1 by Xt,
then take expectation
E(X2t)−ϕE(XtXt−1)=E(XtZt)+θE(XtZt−1)
Since E(XtZk)=E[(∑∞j=0ψjZt−j)Zk]=ψt−kσ2, we have
γ(0)−ϕγ(1)=σ2+θ(θ+ϕ)σ2
Multiply by Xt−1
E(Xt−1Xt)−ϕE(X2t−1)=E(Xt−1Zt)+θE(Xt−1Zt−1)
γ(1)−ϕγ(0)=0+θσ2ψ0=θσ2
Using the two equations from 1 and 2, we can solve γ(0),γ(1)
- Multiply by Xt−k, for k≥2
E(Xt−kXt)−ϕE(Xt−kXt−1)=E(Xt−kZt)+θE(Xt−kZt−1)
γ(k)−ϕγ(k−1)=0⟹γ(k)=ϕγ(k−1)
Test for MAs and ARs from the ACF and PACF
ACF of an MA(q) process
- Suppose {Xt} is an MA(q), then ρ(h)=0 for all h>q
- By asymptotic normality
^ρ(q+1)⋅∼N(0,wq+1,q+1n)
and Bartlett
wq+1,q+1=∞∑k=1[ρ(k+q+1)+ρ(k−q−1)−2ρ(k+1)ρ(q)]2=∞∑k=1ρ(k−q−1)2=1+2q∑j=1ρ(j)2
Test for an MA(q): from the ACF
Hypotheses
H0:{Xt}∼MA(q)⟷HA:Not H0
Test statistic
Z=^ρ(q+1)−0√1+2∑qj=1^ρ(j)2n
Reject H0 if |Z|≥zα/2
- Note: under the null hypothesis, we use the sample ACF plot with bounds
±1.96×√1+2∑qj=1^ρ(j)2n to check
if ^ρ(h) for all h≥q+1 are inside the bounds.
But this may have some multiple testing problems.
Partial autocorrelation function (PACF)
We define the partial autocorrelation function (PACF)
of an ARMA process as the function α(⋅)
α(0)=1,α(h)=ϕhh, for h≥1
Here, ϕhh is the last entry of
ϕh=Γ−1hγh,where Γh=[γ(i−j)]hi,j=1, γh=[γ(1),…,γ(h)]′
Sample PACF ^α(⋅):
change all γ(⋅) above to ^γ(⋅)
Recall: in DL algorithm ^Xn+1=ϕn1Xn+⋯+ϕnnX1,
ϕnn=α(n),PACF at lag n
PACF property
ϕnn is the correlation between the prediction errors
α(n)=Corr(Xn−P(Xn|X1,…,Xn−1),X0−P(X0|X1,…,Xn−1))
Theorem: A stationary series is AR(p) if and only if
α(h)=0 for all h>p
If {Xt} is an AR(p), then we have asymptotic normality
^α(h)⋅∼N(0,1n),for all h>p
Test for an AR(p): from the PACF
Hypotheses
H0:{Xt}∼AR(p)⟷HA:Not H0
Test statistic
Z=^α(p+1)−0√1n
Reject H0 if |Z|≥zα/2
- Note: under the null hypothesis, we use the sample PACF plot with bounds
±1.96/√n to check
if ^α(h) for all h≥p+1 are inside the bounds.
But this may have some multiple testing problems.
Forecast ARMA Processes
Forecast ARMA(p,q) using the innovation algorithm
Let m=max(p,q)
One-step prediction
^Xn+1=⎧⎪⎨⎪⎩∑nj=1θnj(Xn+1−j−^Xn+1−j),n<m∑pi=1ϕiXn+1−i+∑qj=1θnj(Xn+1−j−^Xn+1−j),n≥m
- Special case: AR(p) process
^Xn+1=p∑i=1ϕkXn+1−i,n≥p
h-step prediction: for n>m and all h≥1,
PnXn+h=p∑i=1ϕiPnXn+h−i+q∑j=hθn+h−1,j(Xn+1−j−^Xn+1−j)
Innovation algorithm parameters vs MA parameters
Innovation algorithm parameters converges to the MA parameters:
If {Xt} is invertible, then as n→∞,
θnj⟶θj,j=1,2,…,q
Prediction MSE converges to σ2:
Let
vn=E(Xn+1−^Xn+1)2,and vn=rnσ2
If {Xt} is invertible, then as n→∞,
rn⟶1
References
- Brockwell, Peter J. and Davis, Richard A. (2016), Introduction to Time Series and Forecasting, Third Edition. New York: Springer